Skip to main content
Log in

FT-IR and FT-RAMAN analysis and light-harvesting efficiency (LHE) enhancement for DSSC applications of hydrazide derivatives

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The vibrational frequencies obtained by the recorded the spectra of FT-IR and FT-Raman are precisely assigned and compared with the theoretical frequencies. The stabilities of p-hydroxybenzoylhydrazine (HBH) and p-aminobenzoylhydrazide(ABH) are analyzed through PES scan, and most stable structures are obtained. On the most stable structures of these two compounds, the HOMO–LUMO analysis is carried out at B3LYP/6-31G (d,p) level for the zero field and with fields (0.015 and 0.025 VA−1). The HOMO–LUMO gap widely decreases from 4.0592 eV to 0.6323 eV and 3.7645 eV to 0.4040 eV, respectively, as the field increases (0.0—0.025 VA−1). The HOMO–LUMO gap is also measured from the DOS spectrum which is also in line along with the calculated value using the Gaussian 09 W program package. The DOS spectrum predicts that the HOMO–LUMO gap decreases when there is the increase in the electric field. The donors studied theoretically in this study are azulene, pyrrole, furan, tetrafuran and thiophene. The global reactivity descriptors, i.e., ionization potential (IP), hardness (η), chemical potential (μ), electron affinity (EA), softness (s), electronegativity (χ), electrophilicity index (ω), maximum amount of electronic charge (∆Nmax), nucleofugality (∆En), electrofugality (∆Ee) and ΔEback-donation are calculated for all hydrazide derivatives. The best dye sensitized solar cell (DSSC) performance is observed in HBH and ABH derivatives with thiophene donor group compared to other donor groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Sharma, V. Sharma, S.S. Sharma, Nanoscale. Res. Lett 13(1), 381 (2018)

    Article  CAS  Google Scholar 

  2. A. Hema Chander, M. Krishna, Y. Srikanth, IOSR. J. Electr Electron. Eng. 10, 151–154 (2015)

    Google Scholar 

  3. M.E.M. Zayed et al., Chem. Cent. J 12, 26 (2018)

    Article  CAS  Google Scholar 

  4. K. Galappaththi, Int. J. Photoenergy. Volume 2017, Article ID 8564293

  5. F. Zanjanchi, J. Beheshtian, J. Iranian. Chem. Soc 16(4), 795–805 (2018)

    Article  CAS  Google Scholar 

  6. M.J. Frisch, G.W. Trucks, H.B. Schlegal et al.,GAUSSIAN 09, Revision A.02,Gaussian, Inc., Wallingford CT, (2009)

  7. L. Wen, H. Yin, W. Li, K. Li, Acta. Cryst. E 65, o2623 (2009)

    Article  CAS  Google Scholar 

  8. L.J. Bellamy, Polymer Letters Edition, 3rd edn. (Wiley, New York, 1975), pp. 121–121

    Google Scholar 

  9. V. Arjunan, S. Mohan, S. Subramanian, B.T. Gowda, Spectrochim. Acta. A. 60(5), 1141–1159 (2004)

    Article  CAS  Google Scholar 

  10. G. Varsanyi, vol. I, Adam Hilger, London, 1974.

  11. D.L. Pavia, G.M. Lampman, G.S. Kriz (eds.), Brooks/Cole (Thomson Learning, Singapore, 2001), p. 52

    Google Scholar 

  12. V. Arjunan et al., Spectrochim. Acta. Part A 79, 486–496 (2011)

    Article  CAS  Google Scholar 

  13. H. Lampert, W. Mikenda, A. Karpten, J. Phys. Chem. 101, 2254–2263 (1997)

    Article  CAS  Google Scholar 

  14. M. Snehalatha, C. Ravikumar, I. Hubert Joe, V.S. Jayakumar, J Raman Spectrosc. 40(9), 1121-1126 (2009)

  15. H.O. Kalinowski, S. Berger, S. Braun, John Wiley & Sons, Chichester, 1988.

  16. K. Pihlaja, E. Kleinpeter (Eds.), VCH Publishers, Deerfield Beach, 1994.

  17. V. Vimalraj et al., Spectrochim. Acta Part A 78, 670–675 (2011)

    Article  CAS  Google Scholar 

  18. R. Zaleśny et al., THEOCHEM 907, 46 (2009)

    Article  CAS  Google Scholar 

  19. https://chem.ch.huji.ac.il/nmr/techniques/1d/row2/o.html

  20. R.G. Pearson, J. Chem. Sci. 117, 369–377 (2005)

    Article  CAS  Google Scholar 

  21. G.C. dos Santos et al., J. Mol. Modeling 25, 75 (2019)

    Article  CAS  Google Scholar 

  22. F. Barati-darband et al., J. Phys. Chem. C 122, 23968–23977 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

R.M (R. MEENAKSHI) thanks the University Grants Commission (UGC) for the fund provided for the minor research project (MRP-7006/16(SERO/UGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Meenakshi.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenakshi, R. FT-IR and FT-RAMAN analysis and light-harvesting efficiency (LHE) enhancement for DSSC applications of hydrazide derivatives. J IRAN CHEM SOC 18, 1179–1198 (2021). https://doi.org/10.1007/s13738-020-02101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02101-y

Keywords

Navigation