Skip to main content
Log in

The bonding in hexagonal Ba2/3Pt3B2 and CeCo3B2 type ternary metal borides

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Tight-binding calculations with an extended Hückel Hamiltonian were performed on Ba2/3Pt3B2 and LuOs3B2. Hypothetical linear metal boride chains present in these materials are analyzed with a three-dimensional model that contains a trigonal bipyramidal T3B2 (T = transition metal) building unit for the compounds. The geometrical structure for the T3B2 trigonal bipyramids depends on the number of electrons. For systems that have greater than 36 electrons in its trigonal bipyramidal building unit, a structural distortion is expected. Electron back donation from the electron-rich M3 fragment to the empty e′ set on B2 creates boron–boron interaction along the z-axis. Boron–boron pairing then participates as an electron sink and causes a trigonal distortion of the platinum Kagome net. On the other hand, a system with <35 electrons should have an undistorted, CeCo3B2 type structure. The electronic factors that create the breathing motion are discussed and analyzed with the aid of molecular and solid-state models. The metal–metal bonding associated with the structural properties also has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This nomenclature means that counting the rings around any vertex from one of the triangles we encounter, in order, a triangle is followed by a hexagon.

  2. The parameters used were taken from [56, 65, 66].

References

  1. Nesper R (1991) Angew Chem Int Ed 30:788

    Google Scholar 

  2. Cotton FA (1966) Q Rev Chem Soc 20:389

    Article  CAS  Google Scholar 

  3. Cotton FA, Murillo CA, Walton RA (2005) Multiple bonds between metal atoms, 3rd edn. Springer, New York

    Book  Google Scholar 

  4. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, Englewood Cliffs

    Google Scholar 

  5. Matthias BT, Corenzwit E, Vandenberg JM, Barz H (1977) Proc Natl Acad Sci USA 74:1334

    Article  CAS  Google Scholar 

  6. Vandenberg JM, Matthias BT (1977) Proc Natl Acad Sci USA 74:1336

    Article  CAS  Google Scholar 

  7. Shenoy GK, Dunlap BD, Fradin FY (1981) Ternary superconductors. Elsevier, New York

    Google Scholar 

  8. Kuz’ma YuB, Krip’yakevich PI, Biloninhko NS (1969) Dopovidi Akad Nauk USSR A10:939

    Google Scholar 

  9. Niihara K, Yashima S (1973) Bull Chem Soc Jpn 46:770

    Article  CAS  Google Scholar 

  10. Rogl P (1973) Monatsh Chem 104:1623

    Article  CAS  Google Scholar 

  11. Rogl P (1975) Monatsh Chem 106:1624

    Article  Google Scholar 

  12. Valovka IP, Kuz’ma YuB (1978) Inorg Mater 14:356

    Google Scholar 

  13. Johnston DC (1977) Solid State Commun 24:699

    Article  CAS  Google Scholar 

  14. Ku HC, Meisner GP, Acker F, Johnston DC (1980) Solid State Commun 35:91

    Article  CAS  Google Scholar 

  15. Ku HC, Meisner GP (1981) J Less-Common Met 78:99

    Article  CAS  Google Scholar 

  16. Vandenberg JM, Barz H (1980) Mater Res Bull 15:1493

    Article  CAS  Google Scholar 

  17. Barz H (1980) Mater Res Bull 15:1489

    Article  CAS  Google Scholar 

  18. Voroshilov YuV, Kripyakevich PI, Kuz’ma YuB (1971) Sov Phys Crystallogr 15:813

    Google Scholar 

  19. Rogl P (1980) J Nucl Mater 92:292

    Article  CAS  Google Scholar 

  20. Shelton RN (1978) J Less-Common Met 62:191

    Article  CAS  Google Scholar 

  21. Jung W, Quentmeier D (1984) Z Kristallogr 151:172

    Article  Google Scholar 

  22. Wells AF (1977) Three-dimensional nets and polyhedra. Wiley, New York

    Google Scholar 

  23. Hahn T (ed) (1983) International tables for crystallography, vol. A: space-group symmetry. Reidel Dordrecht, Netherlands

    Google Scholar 

  24. Laves F (1967) In: Westbrook JH (ed) Intermetallic compounds. Wiley, New York, p 129

    Google Scholar 

  25. Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley, New York

    Google Scholar 

  26. Johnston RL, Hoffmann R (1990) Polyhedron 9:1901

    Article  CAS  Google Scholar 

  27. Johnston RL, Hoffmann R (1992) Z Anorgan Allgem Chem 616:105

    Article  CAS  Google Scholar 

  28. Cenzual K, Chabot B, Parthe E (1988) Acta Cryst C44:221

    CAS  Google Scholar 

  29. Voroshilov YuV, Krypyakevich PI, Kuz’ma YuB (1971) Sov Phys Cryst 15:813

    Google Scholar 

  30. Jung W, Quentemier D (1980) Z Krist 151:172

    Article  CAS  Google Scholar 

  31. Hiebl K, Rogl P, Uhl E, Sienko MJ (1980) Inorg Chem 19:3316

    Article  CAS  Google Scholar 

  32. Chevalier B, Cole A, Lejay P, Etourneau J (1981) Mater Res Bull 16:1067

    Article  CAS  Google Scholar 

  33. Vandenberg JM, Barz H (1980) ibid 15:1493

    CAS  Google Scholar 

  34. Umarji AM, Dhar SK, Malik SK, Vijayaraghavan R (1987) Phys Rev B 36:8929

    Article  CAS  Google Scholar 

  35. Bailey MS, Lobkovsky EB, Hicks DG, Claus H, Hor YS, Schlueter JA, Mitchell JF (2007) J Solid State Chem 180:1333

    Article  CAS  Google Scholar 

  36. Mirgel R, Jung WJ (1988) Less-Common Met 144:87

    Article  CAS  Google Scholar 

  37. Takegahara K, Harima H, Kasuya T (1985) J Phys Soc Jpn 54:4743

    Article  CAS  Google Scholar 

  38. Wade K (1976) Adv Inorg Chem Radiochem 9:446

    Google Scholar 

  39. Mingos DMP (1984) Acc Chem Res 17:311

    Article  CAS  Google Scholar 

  40. Lauher JW (1978) J Am Chem Soc 100:5305

    Article  CAS  Google Scholar 

  41. Jemmis ED, Jayasree EG (2003) Acc Chem Res 36:816

    Article  CAS  Google Scholar 

  42. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Chem Rev 102:93

    Article  CAS  Google Scholar 

  43. King RB (1990) Inorg Chem 29:2164 has used a different electron counting scheme but also obtains the same number of valence electrons for the trigonal bipyramidal clusters. With 18 electrons, each edge then could be considered to be a localized two center—two electron bond

  44. Dahr SK, Malik SK, Vijayaragavan R (1981) J Phys C: Solid State Phys 14:L321

    Article  Google Scholar 

  45. Oesterreicher H, Parker FT, Misroch M (1977) Appl Phys 12:287

    Article  CAS  Google Scholar 

  46. Whangbo M-H, Hoffmann R, Woodward RB (1979) Proc R Soc London Ser A 366:23

    Article  CAS  Google Scholar 

  47. Hoffmann R (1963) J Chem Phys 39:1397

    Article  CAS  Google Scholar 

  48. Hoffmann R, Lipscomb WN (1962) J Chem Phys 36:2179

    Article  CAS  Google Scholar 

  49. Ammeter JH, Bürgi H-B, Thiebeault JC, Hoffmann R (1978) J Am Chem Soc 100:3686

    Article  CAS  Google Scholar 

  50. Taylor NJ, Chieh PC, Carty AJ (1975) J Chem Soc, Chem Commun 448

  51. Longoni G, Chini P (1976) J Am Chem Soc 98:7225

    Article  CAS  Google Scholar 

  52. Cotton FA, Haas TE (1964) Inorg Chem 3:10

    Article  CAS  Google Scholar 

  53. Wei CH, Dahl LF (1968) J Am Chem Soc 90:3960

    Article  CAS  Google Scholar 

  54. Ruff JK (1971) ibid 93:2159

  55. Lauher JW (1978) ibid 100:5305

  56. Dedieu A, Hoffmann R (1978) ibid 100:2074

  57. Schilling BER, Hoffmann R (1979) ibid 101:3456

  58. Evans DG, Hughes GR, Mingos DMP, Bassett J-M, Welch AJ (1980) J Chem Soc Chem Commun 1255

  59. Delley B, Manning MC, Ellis DE, Berkowitz J, Trogler WC (1982) Inorg Chem 21:2247

    Article  CAS  Google Scholar 

  60. Rives AB, Xiao-Zeng Y, Fenske RF (1982) ibid 21:2286

  61. Pacchioni G, Fantucci D, Valenti V (1982) Inorg Chem Acta 224:89

    CAS  Google Scholar 

  62. Fantucci P, Pacchioni G, Valenti V (1984) Inorg Chem 23:247

    Article  CAS  Google Scholar 

  63. Chang KW, Wooley RG (1979) J Phys C: Solid State Phys 12:2745

    Article  CAS  Google Scholar 

  64. Bullet DW (1985) Chem Phys Lett 115:450

    Article  Google Scholar 

  65. Underwood DJ, Hoffmann R, Tatsumi K, Nakamura A, Yamamoto Y (1985) J Am Chem Soc 107:5968

    Article  CAS  Google Scholar 

  66. Burdett JK, Canadell E, Miller GJ (1986) J Am Chem Soc 108:6561

    Article  CAS  Google Scholar 

  67. Whangbo M-H, Lee C, Köhler J (2006) Angew Chem Int Ed 45:7545

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Robert A. Welch Foundation and the Texas Center for Superconducivity at the University of Houston for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Albright.

Additional information

Dedicated to Professor Eluvathingal Jemmis and published as part of the special collection of articles celebrating his 60th birthday; dedicated also in memoriam of Dr. Seeyearl Seong.

Seeyearl Seong: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seong, S., Choi, S.Y. & Albright, T.A. The bonding in hexagonal Ba2/3Pt3B2 and CeCo3B2 type ternary metal borides. Theor Chem Acc 131, 1091 (2012). https://doi.org/10.1007/s00214-012-1091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1091-4

Keywords

Navigation