Skip to main content
Log in

Perfect Tetrahedral B16X4 (X = P, As) as Non-metal-stabilized Borospherenes with a Truncated B16 Cage at the Center

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Based on extensive global minimum searches augmented with first-principles theory calculations, we predict herein the first boron-based perfect tetrahedral clusters Td B16P4 (2) and Td B16As4 (3) which, as aromatic non-metal analogs of the experimentally observed Td Au20 (2003, Science 299, 864), all contain a truncated Td B16 (1) cage at the center effectively stabilized by four trivalent non-metal atoms (P, As) at the corners. Detailed natural bonding orbital (NBO) and adaptive natural density partitioning (AdNDP) bonding analyses indicate that the valences of all the trivalent component atoms in these tetrahedral clusters are fully satisfied, rendering spherical aromaticity and extra stability to the systems. The IR, Raman, and photoelectron spectra (PES) of the concerned species are theoretically simulated to facilitate their characterizations in future experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this article are available on request from the corresponding author.

References

  1. A. R. Oganov, J. H. Chen, C. Gatti, Y. Z. Ma, Y. M. Ma, C. W. Glass, Z. X. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko (2009). Nature 460, 292.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Acc. Chem. Res. 47, 1349.

    Article  CAS  PubMed  Google Scholar 

  3. T. Jian, X. N. Chen, S. D. Li, A. I. Boldyrev, J. Li, and L. S. Wang (2019). Chem. Soc. Rev. 48, 3550.

    Article  CAS  PubMed  Google Scholar 

  4. L. S. Wang (2016). Int. Rev. Phys. Chem. 35, 69.

    Article  ADS  Google Scholar 

  5. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727.

    Article  CAS  PubMed  Google Scholar 

  6. H. Bai, T. T. Chen, Q. Chen, X. Y. Zhao, Y. Y. Zhang, W. J. Chen, W. L. Li, L. F. Cheung, B. Bai, J. Cavanagh, W. Huang, S. D. Li, J. Li, and L. S. Wang (2019). Nanoscale 11, 23286.

    Article  CAS  PubMed  Google Scholar 

  7. Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144.

    Article  ADS  PubMed  Google Scholar 

  8. L. Pei, H. R. Li, M. Yan, Q. Chen, Y. W. Mu, H. G. Lu, Y. B. Wu, and S. D. Li (2018). Phys. Chem. Chem. Phys. 20, 15330.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2015). Acs Nano 9, 754.

    Article  PubMed  Google Scholar 

  10. W. J. Chen, Y. Y. Ma, T. T. Chen, M. Z. Ao, D. F. Yuan, Q. Chen, X. X. Tian, Y. W. Mu, S. D. Li, and L. S. Wang (2021). Nanoscale 13, 3868.

    Article  CAS  PubMed  Google Scholar 

  11. A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 7244.

    Article  CAS  PubMed  Google Scholar 

  12. W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 9922.

    Article  CAS  PubMed  Google Scholar 

  13. H. Liu, Y.-W. Mu, and S.-D. Li (2022). J. Clust. Sci. 33, 81.

    Article  CAS  Google Scholar 

  14. Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed. 54, 8160.

    Article  CAS  Google Scholar 

  15. E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed. 46, 8503.

    Article  CAS  Google Scholar 

  16. L. Pei, Q. Q. Yan, and S. D. Li (2021). Eur. J. Inorg. Chem. 26, 2618.

    Article  Google Scholar 

  17. Q. Q. Yan, L. Pei, and S. D. Li (2021). J. Mol. Model. 27, 364.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Q. Yan, T. Zhang, Y. Y. Ma, Q. Chen, Y. W. Mu, and S. D. Li (2022). Nanoscale 14, 11443.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Y. Ma, X. Y. Zhao, W. Y. Zan, Y. W. Mu, Z. H. Zhang, and S. D. Li (2022). Nano Res. 15, 5752.

    Article  ADS  CAS  Google Scholar 

  20. L. W. Sai, X. Wu, and F. Y. Li (2022). Phys. Chem. Chem. Phys. 24, 15687.

    Article  CAS  PubMed  Google Scholar 

  21. M. Zhang, H. G. Lu, and S. D. Li (2021). Nano Res. 14, 4719.

    Article  ADS  CAS  Google Scholar 

  22. M. Zhang, W.-P. Jia, T. Zhang, B.-B. Pei, J. Xu, X. Tian, H.-G. Lu, and S. D. Li (2022). Sci. Rep. 12, 19741.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. V. Steglenko, N. V. Tkachenko, A. I. Boldyrev, R. M. Minyaev, and V. I. Minkin (2020). J. Comput. Chem. 41, 1456.

    Article  CAS  PubMed  Google Scholar 

  24. N. V. Tkachenko, D. Steglenko, N. Fedik, N. M. Boldyreva, R. M. Minyaev, V. I. Minkin, and A. I. Boldyrev (2019). Phys. Chem. Chem. Phys. 21, 19764.

    Article  CAS  PubMed  Google Scholar 

  25. J. Barroso, S. Pan, and G. Merino (2022). Chem. Soc. Rev. 51, 1098.

    Article  CAS  PubMed  Google Scholar 

  26. H. Bai, Q. Chen, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed. 54, 941.

    Article  CAS  Google Scholar 

  27. T. T. Chen, W. L. Li, W. J. Chen, X. H. Yu, X. R. Dong, J. Li, and L. S. Wang (2020). Nat. Commun. 11, 2766.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. X. Y. Zhao, M. Yan, Z. H. Wei, and S. D. Li (2020). Rsc Adv. 10, 34225.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Zhang, X. Y. Zhao, M. Yan, and S. D. Li (2020). Rsc Adv. 10, 29320.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Zhang, X. Q. Lu, M. Yan, and S. D. Li (2021). Acs Omega 6, 10991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X. Q. Lu, C. Y. Gao, Z. H. Wei, and S. D. Li (2021). J. Mol. Model. 27, 130.

    Article  CAS  PubMed  Google Scholar 

  32. J. Li, X. Li, H. J. Zhai, and L. S. Wang (2003). Science 299, 864.

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Y. F. Zhao, X. Chen, and J. Li (2017). Nano Res. 10, 3407.

    Article  CAS  Google Scholar 

  34. S. Goedecker (2004). J. Chem. Phys. 120, 9911.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, and R. Schneider (2008). J. Chem. Phys. 129.

    Article  ADS  PubMed  Google Scholar 

  36. A. Willand, Y. O. Kvashnin, L. Genovese, A. Vázquez-Mayagoitia, A. K. Deb, A. Sadeghi, T. Deutsch, and S. Goedecker (2013). J. Chem. Phys. 138.

    Article  ADS  PubMed  Google Scholar 

  37. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.

    Article  ADS  CAS  Google Scholar 

  38. V. N. Staroverov, G. E. Scuseria, J. M. Tao, and J. P. Perdew (2003). J. Chem. Phys. 119, 12129.

    Article  ADS  CAS  Google Scholar 

  39. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). The. J. Chem. Phys. 72, 650.

    Article  ADS  CAS  Google Scholar 

  40. R. A. Kendall, T. H. Dunning, and R. J. Harrison (1992). J. Chem. Phys. 96, 6796.

    Article  ADS  CAS  Google Scholar 

  41. M. J. Frisch, et al., Gaussian 16, Revision A.03 (Gaussian Inc., Wallingford CT, 2016).

    Google Scholar 

  42. G. D. Purvis and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910.

    Article  ADS  CAS  Google Scholar 

  43. J. Čížek (1969). Adv. Chem. Phys. 14, 35.

    Google Scholar 

  44. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon (1989). Chem. Phys. Lett. 157, 479.

    Article  ADS  CAS  Google Scholar 

  45. H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schutz (2012). Wiley Interdiscip. Rev: Comput. Mol. Sci. 2, 242.

    CAS  Google Scholar 

  46. J. V. Vondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.

    Article  ADS  Google Scholar 

  47. G. J. Martyna, M. L. Klein, and M. Tuckerman (1992). J. Chem. Phys. 97, 2635.

    Article  ADS  Google Scholar 

  48. P. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold (2013). J. Coordin. Chem. 72, 2215.

    Google Scholar 

  49. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  PubMed  Google Scholar 

  50. N. V. Tkachenko and A. I. Boldyrev (2019). Phys. Chem. Chem. Phys. 21, 9590.

    Article  CAS  PubMed  Google Scholar 

  51. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  PubMed  Google Scholar 

  52. W. Humphrey, A. Dalke, and K. Schulten (1996). J. Mol. Graph. 14, 33.

    Article  CAS  PubMed  Google Scholar 

  53. R. Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454.

    Article  ADS  CAS  Google Scholar 

  54. R. O. Jones, G. Gantefor, S. Hunsicker, and P. Pieperhoff (1995). J. Chem. Phys. 103, 9549.

    Article  ADS  CAS  Google Scholar 

  55. R. O. Jones and D. Hohl (1990). J. Chem. Phys. 92, 6710.

    Article  ADS  CAS  Google Scholar 

  56. H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li, and L. S. Wang (2016). Phys. Chem. Chem. Phys. 18, 29147.

    Article  CAS  PubMed  Google Scholar 

  57. D. Y. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.

    Article  CAS  PubMed  Google Scholar 

  58. P. V. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, and N. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  PubMed  Google Scholar 

  59. Z. F. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. V. Schleyer (2005). Chem. Rev. 105, 3842.

    Article  CAS  PubMed  Google Scholar 

  60. D. Ciuparu, R. F. Klie, Y. M. Zhu, and L. Pfefferle (2004). J. Phys. Chem. B 108, 3967.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22373061 and 21973057 to S.-D. L; 22003034 to Q. C).

Author information

Authors and Affiliations

Authors

Contributions

Si-Dian Li, Qiang-Chen and Yue-Wen Mu designed the project and finalized the manuscript; Cai-Yue Gao and Qiao-Qiao Yan performed the calculations and prepared the first draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiang Chen, Yue-Wen Mu or Si-Dian Li.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3175 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, CY., Yan, QQ., Chen, Q. et al. Perfect Tetrahedral B16X4 (X = P, As) as Non-metal-stabilized Borospherenes with a Truncated B16 Cage at the Center. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02591-3

Keywords

Navigation