Skip to main content
Log in

A theoretical approach to molecular single-electron transistors

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present theoretical methods and computational strategies of the effects of nanoparticles on linear optical properties of molecules. We present quantum mechanical-molecular mechanics response methods for calculating electromagnetic properties of molecules interacting with nanoparticles and we report strategies for calculating electronic and redox states of molecules sandwiched between gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Staykov A, Yoshizawa K Theo Chem Acc (accepted for the Imamura Festschriff). doi:10.1007/s00214-011-0968-y

  2. Naleway CA, Curtiss LA, Miller JR (1991) J Phys Chem 95:8434

    Article  CAS  Google Scholar 

  3. Larsson S (1981) J Am Chem Soc 103:4034

    Article  CAS  Google Scholar 

  4. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  5. Marcus RA (1964) Ann Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  6. Marcus RA (1965) J Chem Phys 43:679

    Article  CAS  Google Scholar 

  7. Kuznetsov AM, Ulstrup J (1999) Electron transfer in chemistry and biology. Wiley, Chichester

    Google Scholar 

  8. Mikkelsen KV, Ratner MA (1987) Chem Rev 87:113

    Article  CAS  Google Scholar 

  9. Beratan DN, Hopfield JJ (1984) J Am Chem Soc 106:1584

    Article  CAS  Google Scholar 

  10. Rendell APL, Bacskay GB, Hush NS (1988) J Am Chem Soc 110:8343

    Article  CAS  Google Scholar 

  11. Newton MD (1999) Adv Chem Phys 106:303

    Article  CAS  Google Scholar 

  12. Reimers JR, Hush NS (1990) Chem Phys 146:89

    Article  CAS  Google Scholar 

  13. Aviram A, Ratner MA (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  14. Mujica V, Kemp M, Roitberg A, Ratner MA (1996) J Chem Phys 104:7296

    Article  CAS  Google Scholar 

  15. Mujica V, Kemp M, Ratner MA (1994) J Chem Phys 101:6849

    Article  Google Scholar 

  16. Nitzan A, Ratner MA (2003) Science 300:1384

    Google Scholar 

  17. Lindsay SM, Ratner MA (2007) Adv Mat 19:23

    Article  CAS  Google Scholar 

  18. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nature 407:57

    Article  Google Scholar 

  19. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethne JP, Abrua HD, McEuen PL, Ralph DC (2002) Nature 417:722

    Article  CAS  Google Scholar 

  20. Liang W, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417:725

    Article  CAS  Google Scholar 

  21. Kubatkin S, Danilov A, Hjort M, Cornil J, Brdas J-L, Stuhr-Hansen N, Hedegård P, Bjørnholm T (2003) Nature 425:698

    Article  CAS  Google Scholar 

  22. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  Google Scholar 

  23. Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao YX, Tour JM, Shashidhar R, Ratna BR (2005) Nat Mater 4:167

    Article  CAS  Google Scholar 

  24. van der Molen SJ, Liljeroth P (2010) J Phys Condens Matter 22:133001

    Article  Google Scholar 

  25. Mirkin CA, Ratner MA (1992) Ann Rev Phys Chem 43:719

    Article  CAS  Google Scholar 

  26. Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) Adv Mater 10:1297

    Article  Google Scholar 

  27. Nitzan A, Ratner MA (2003) Science 300:1384

    Article  CAS  Google Scholar 

  28. Health JR, Ratner MA (2003) Phys Today 56:43

    Article  Google Scholar 

  29. Mikkelsen KV, Ratner MA (1989) J Chem Phys 90:4237

    Article  CAS  Google Scholar 

  30. Taniguchi M, Tsutsui M, Mogi R, Sugawara T, Tsuji Y, Yoshizawa K, Kawai T (2011) J Am Chem Soc 133:11426

    Article  CAS  Google Scholar 

  31. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K Theo Chem Acc. doi:10.1007/s00214-011-0941-9

  32. Olsen ST, Hansen T, Mikkelsen KV (submitted) J Phys Chem C

  33. Galperin M, Nitzan A (2005) Phys Rev Lett 95:206802

    Article  Google Scholar 

  34. Galperin M, Nitzan A (2006) J Chem Phys 124:234709

    Article  Google Scholar 

  35. Orrit M (2009) Nature 460:42

    Article  CAS  Google Scholar 

  36. Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Goetzinger S, Sandoghdar V (2009) Nature 460:76

    Article  CAS  Google Scholar 

  37. Ward DR, Halas JN, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D (2008) Nano Lett 8:919

    Article  CAS  Google Scholar 

  38. Sukharev M, Galperin M (2010) Phys Rev B 81:165307

    Article  Google Scholar 

  39. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Nat Lett 462:1039

    Article  CAS  Google Scholar 

  40. Hansen T, Solomon GC, Andrews DQ, Ratner MA (2009) J Chem Phys 131:194704-1

    Google Scholar 

  41. Kaasbjerg K, Flensberg K (2008) Nano Lett 8:3809

    Article  CAS  Google Scholar 

  42. Stokbro K (2010) J Phys Chem C 114:20461

    Article  CAS  Google Scholar 

  43. Hansen T, Mikkelsen KV (2004) Theo Chem Acc 111:122

    Article  CAS  Google Scholar 

  44. Hansen T, Pedersen TB, Mikkelsen KV (2005) Chem Phys Lett 405:118

    Article  CAS  Google Scholar 

  45. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2003) J Phys Chem A 107:2578

    Article  CAS  Google Scholar 

  46. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2003) J Chem Phys 118:1620

    Article  CAS  Google Scholar 

  47. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2003) J Chem Phys 119:10519

    Article  CAS  Google Scholar 

  48. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2004) J Chem Phys 120:3787

    Article  CAS  Google Scholar 

  49. Kongsted J, Osted A, Mikkelsen KV, Christiansen O (2002) Mol Phys 100:1813

    Article  CAS  Google Scholar 

  50. Mikkelsen KV (2006) Ann Rev Phys Chem 57:365

    Article  CAS  Google Scholar 

  51. Nielsen CB, Christiansen O, Mikkelsen KV, Kongsted J (2007) J Chem Phys 126:154112

    Article  Google Scholar 

  52. Hansen T (2005) A molecule wired. Ph.D. thesis, University of Copenhagen

  53. Hansen T, Mikkelsen KV Manuscript in preparation

  54. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  55. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  56. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  57. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558

    Article  CAS  Google Scholar 

  58. Surjan PR (1989) Second quantized approach to quantum chemistry. Springer, Berlin, Germany

  59. Tomasi J, Pomelli CS (1998) In: Encyclopedia of computational chemistry. Wiley, New York, p 2343

  60. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  61. Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  62. Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  63. Jones JE (1924) Royal Soc Lond 106:441

    Article  CAS  Google Scholar 

  64. Osted A, Kongsted J, Mikkelsen KV, Christiansen O (2004) J Phys Chem A 108:8646

    Article  CAS  Google Scholar 

  65. Poulsen TD, Kongsted J, Osted A, Ogilby PR, Mikkelsen KV (2001) J Chem Phys 115:2393

    Article  CAS  Google Scholar 

  66. Poulsen TD, Ogilby PR, Mikkelsen KV (2002) J Chem Phys 116:3730

    Article  CAS  Google Scholar 

  67. Nymand TM, Astrand P-O, Mikkelsen KV (1997) J Phys Chem B 101:4105

    Article  CAS  Google Scholar 

  68. Sauer SPA (2011) Molecular electromagnetism. A computational chemistry approach. Oxford University Press, Oxford, UK

    Google Scholar 

  69. Olsen J, Jørgensen P (1985) J Chem Phys 82:3235

    Article  CAS  Google Scholar 

  70. Salek P, Vahtras O, Helgaker T, Ågren H (2002) J Chem Phys 117:9630

    Article  CAS  Google Scholar 

  71. Norman P (2011) Notes on response theory

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, . Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian09, Revision A.1, Gaussian, Inc, Wallingford, CT

  73. Dalton Quantum Chemistry Program (2005) http://www.kjemi.uio.no/software/dalton/dalton.html

Download references

Acknowledgments

The authors thank the Danish Center for Scientific Computing for computational resources. KVM thanks the Danish Natural Science Research Council/the Danish Councils for Independent Research and the Villum Kann Rasmussen Foundation for financial support. TH thanks the Carlsberg Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt V. Mikkelsen.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Appendix

Appendix

The Ehrenfest method used in the response theory section can be derived in the following manner where the time development of the expectation value of the following operator is represented by

$$ \hat{Q} (t) = {{\rm e}}^{-\hat{\kappa} (t)} \hat{Q} {{\rm e}}^{\hat{\kappa}(t)} $$
(106)

Considering the expectation value of the commutator between \(\hat{Q} (t)\) and the operators in the Schrödinger equation yields

$$ \langle t \vert [\hat{Q}(t), \hat{H}(t) ] \vert t \rangle = \langle t \vert [\hat{Q}(t), i \frac{\partial}{\partial t}] \vert t \rangle $$
(107)

with \(\vert t \rangle\) being the time-dependent wave function. As mentioned in the section on response theory, \(\vert t \rangle = {{\rm e}}^{\hat{\kappa} (t)} \vert 0 \rangle \) and Eq. 107 can be expanded as

$$ \left\langle 0 \left\vert {{\rm e}}^{\hat{\kappa} (t)} \left( \begin{array}{c} {{\rm e}}^{- \hat{\kappa} (t)} \hat{Q} {{\rm e}}^{\hat{\kappa}(t)} (\hat{H}_{(0)} + \hat{V}(t)) - \\ (\hat{H}_{(0)} + \hat{V}(t)){{\rm e}}^{- \hat{\kappa} (t)} \hat{Q} {{\rm e}}^{\hat{\kappa}(t)} \end{array} \right) {{\rm e}}^{-\hat{\kappa}(t) } \right\vert 0 \right\rangle = $$
(108)
$$ \left\langle 0 \left\vert {{\rm e}}^{\hat{\kappa} (t)} \left( \begin{array}{c} {{\rm e}}^{- \hat{\kappa} (t)} \hat{Q} {{\rm e}}^{\hat{\kappa}(t)} i \frac{\partial}{\partial t} - \\ i \frac{\partial}{\partial t} {{\rm e}}^{- \hat{\kappa} (t)} \hat{Q} {{\rm e}}^{\hat{\kappa}(t)} \end{array} \right) {{\rm e}}^{-\hat{\kappa} (t)} \right\vert 0 \right\rangle $$
(109)

and by rearranging, we obtain

$$ \langle 0 \vert \hat{Q} {{\rm e}}^{\hat{\kappa} (t)} (\hat{H}_{(0)} + \hat{V} (t)) {{\rm e}}^{- \hat{\kappa} (t)} - {{\rm e}}^{\hat{\kappa} (t)} (\hat{H}_{(0)} + \hat{V}(t)) {{\rm e}}^{- \hat{\kappa} (t)} \hat{Q} \vert 0 \rangle = $$
(110)
$$ \langle 0 \vert \hat{Q} {{\rm e}}^{\hat{\kappa} (t)} i \frac{\partial}{\partial t} {{\rm e}}^{- \hat{\kappa} (t)} - {{\rm e}}^{\hat{\kappa} (t)} i \frac{\partial}{\partial t} {{\rm e}}^{- \hat{\kappa} (t)}\hat{Q} \vert 0 \rangle $$
(111)

and we rewrite as

$$ \langle 0 \vert \left[ \hat{Q}, {{\rm e}}^{\hat{\kappa} (t)} (\hat{H}_{(0)} + \hat{V}(t)){{\rm e}}^{- \hat{\kappa} (t)} \right] \vert 0 \rangle = \langle 0 \vert \left[ \hat{Q} , {{\rm e}}^{\hat{\kappa} (t)} i \frac{\partial}{\partial t} {{\rm e}}^{- \hat{\kappa} (t)} \right] \vert 0 \rangle $$
(112)

Collecting the terms on the left-hand side

$$ \left\langle 0 \left\vert \left[ \hat{Q}, {{\rm e}}^{\hat{\kappa} (t)} \left( \hat{H}_{(0)} + \hat{V}(t) - i \frac{\partial}{\partial t} \right) {{\rm e}}^{- \hat{\kappa} (t)} \right] \right\vert 0 \right\rangle =0 $$
(113)

and remembering that the exponential function can be expanded as \({{\rm e}}^{\hat{\kappa} (t)} = 1 + \hat{\kappa} (t) + \cdots\) we obtain

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left( \hat{H}_{(0)} + \hat{V}(t) - i \frac{\partial}{\partial t} \right) \right] \right\vert 0 \right\rangle + \left\langle 0 \left\vert \left[ \hat{Q}, \left[ \hat{\kappa} (t) , \left( \hat{H}_{(0)} + \hat{V}(t) - i \frac{\partial}{\partial t} \right) \right] \right] \right\vert 0 \right\rangle + \cdots =0 $$
(114)

In the following, it will be useful to know the following commutator

$$ \begin{aligned} \left[ \hat{\kappa} (t) , -i \frac{\partial}{\partial t} \right] \left\vert t \right\rangle &= \hat{\kappa} (t) \cdot \left(-i \frac{\partial}{\partial t} \right) \left\vert t \right\rangle + i \frac{\partial}{\partial t} \cdot \hat{\kappa} (t) \left\vert t \right\rangle \\ &= \hat{\kappa} (t) \cdot \left(-i \frac{\partial}{\partial t} \right) \left\vert t \right\rangle + i \kappa^\bullet (t) \vert t\rangle \quad + i \hat{\kappa} (t) \cdot \left( \frac{\partial}{\partial t} \right) \left\vert t \right\rangle \\ &= i \kappa^\bullet (t) \vert t \rangle \end{aligned} $$
(115)

where \(\kappa^{\bullet} (t) = \frac{\partial \kappa}{\partial t }.\)

By expanding Eq. 114 in orders of first-order perturbation and neglecting higher-order terms, we obtain:

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left( \hat{H}_{(0)}^{(1)} + \hat{V}(t) \right) \right] \right\vert 0 \right\rangle + \left\langle 0 \left\vert \left[ \hat{Q}, \left[ \hat{\kappa}^{(1)} (t) , \hat{H}_{(0)}^{(0)} - i \frac{\partial}{\partial t} \right] \right] \right\vert 0 \right\rangle =0 $$
(116)

where it should be remembered that \(\hat{V}(t)\) is of first order and we rewrite this as:

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left( \hat{H}_{(0)}^{(1)} + \hat{V}(t) \right) \right] \right\vert 0 \right\rangle + \left\langle 0 \left\vert \left[ \hat{Q} , \left[ \hat{\kappa}^{(1)} (t), \hat{H}_{(0)}^{(0)} \right] + \left[\hat{\kappa}^{(1)} (t) , - i \frac{\partial}{\partial t} \right] \right] \right\vert 0 \right\rangle = 0 $$
(117)

Using Eq. 115, it can be written as

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left( \hat{H}_{(0)}^{(1)} + \hat{V}(t) \right) \right] \right\vert 0 \right\rangle + \left\langle 0 \left\vert \left[ \hat{Q} , \left[ \hat{\kappa}^{(1)} (t) , \hat{H}_{(0)}^{(0)} \right] \right\vert 0 \right\rangle + i \left\langle 0 \left\vert \left[ \hat{Q} , \kappa^\bullet (t) \right] \right] \right\vert 0 \right\rangle = 0 $$
(118)

Since the frequency domain is of interest, we perform a Fourier transform but first we start by rearranging the equation:

$$ \begin{aligned} \left\langle 0 \left\vert \left[ \hat{Q}, - \left[ \hat{H}_{(0)}^{(0)} , \hat{\kappa}^{(1)} \right] + \hat{H}_{(0)}^{(1)} \right] \right\vert 0 \right\rangle + i \left\langle 0 \left\vert \left[ \hat{Q} , \kappa^{\bullet} (t) \right] \right\vert 0 \right\rangle &= - \left\langle 0 \left\vert \left[ \hat{Q}, \hat{V} (t) \right] \right\vert 0 \right\rangle \\ \left\langle 0 \left\vert \left[ \hat{Q}, \left[ \hat{H}_{(0)}^{(0)} , \hat{\kappa}^{(1)} \right] - \hat{H}_{(0)}^{(1)} \right] \right\vert 0 \right\rangle - i \left\langle 0 \left\vert \left[ \hat{Q} , \kappa^{\bullet} (t) \right] \right\vert 0 \right\rangle &= \left\langle 0 \left\vert \left[ \hat{Q}, \hat{V} (t) \right] \right\vert 0 \right\rangle \end{aligned} $$
(119)

The Fourier transform of the equation brings it into the frequency domain we start by multiplying by \({{\rm e}}^{i\omega t}\) and thereby taking the integral one the time-dependent terms.

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left[ \hat{H}_{(0)}^{(0)} , \hat{\kappa}^{\omega} \right] - \hat{H}^{\omega} \right] \right\vert 0 \right\rangle - i \left\langle 0 \left\vert \left[ \hat{Q} , \int {\rm d}t\,{{\rm e}}^{i \omega t} \kappa^{\bullet} (t) \right] \right\vert 0 \right\rangle = \left\langle 0 \left\vert \left[ \hat{Q}, \hat{V}^{\omega} \right] \right\vert 0 \right\rangle $$
(120)

The second term can be solved considering the partial integration and remembering that the first term can be neglected

$$ \begin{aligned} \int {\rm d}t\,{{\rm e}}^{i \omega t} \kappa^{\bullet} (t) &= - \int \left[ \frac{\partial}{\partial t} {{\rm e}}^{i \omega t} \right] \kappa (t) dt \\ &= - i \omega \int {{\rm e}}^{i \omega t} \kappa (t) {\rm d}t \\ &= - i \omega \kappa^{\omega} \end{aligned} $$
(121)

Eq. 120 can now be written as:

$$ \left\langle 0 \left\vert \left[ \hat{Q}, \left[ \hat{H}_{(0)}^{(0)} , \hat{\kappa}^{\omega} \right] - \hat{H}^{\omega} \right] \right\vert 0 \right\rangle - \omega \left\langle 0 \left\vert \left[ \hat{Q} , \kappa^{\omega} \right] \right\vert 0 \right\rangle = \left\langle 0 \left\vert \left[ \hat{Q}, \hat{V}^{\omega} \right] \right\vert 0 \right\rangle. $$
(122)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, S.T., Hansen, T. & Mikkelsen, K.V. A theoretical approach to molecular single-electron transistors. Theor Chem Acc 130, 839–850 (2011). https://doi.org/10.1007/s00214-011-1060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1060-3

Keywords

Navigation