Skip to main content
Log in

Conformational study of the structure of free 12-thiacrown-4 and some of its cation metal complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Conformational search of 12-thiacrown-4, 12t4, was performed using the CONFLEX method and the MMFF94S force field whereby 156 conformations were predicted. Optimized geometries of the 156 predicted conformations were calculated at the HF, B3LYP, CAM-B3LYP, M06, M06L, M062x and M06HF levels using the 6-311G** basis set. The correlation energy was recovered at the MP2 level using the same 6-311G** basis set. Optimized geometries at the MP2/6-311G** level and G3MP2 energies were calculated for some of the low energy conformations. The D 4 conformation was predicted to be the ground state conformation at all levels of theory considered in this work. Comparison between the dihedral angles of the predicted conformations indicated that for the stability of 12t4, a SCCS dihedral angle of 180° requirement is more important than a gauche CSCC dihedral angle requirement. Conformational search was performed also for the 12t4–Ag+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes using the CONFLEX method and the CAChe-augmented MM3 and MMFF94S force fields. Conformations with relative energies less than 10 kcal/mol at the MP2/6-31+G*//HF/6-31+G* level, with double zeta quality basis set on the metal cations, were considered for computations at the same levels as those used for free 12t4, using also the 6-311G** basis set. The cc-pVTZ-pp basis set was used for the metal cations. The predicted ground state conformations of the 12t4–Ag+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes are the C 4, C 4, C 4, C 2v and C 4 conformations, respectively. This is in agreement with the experimental X-ray data for the 12t4–Ag+ and Cd2+ cation metal complexes, but experimentally by X-ray, the 12t4–Bi3+ and Cu+ cation metal complexes have C s and C 4 structures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pedersen CJ (1967) J Am Chem Soc 89:7017

    Article  CAS  Google Scholar 

  2. Pedersen CJ (1988) Angew Chem Int Ed Engl 27:1021

    Article  Google Scholar 

  3. El-Azhary AA, Al-Kahtani AA (2004) J Phys Chem A 108:9601

    Article  CAS  Google Scholar 

  4. Al-Jallal NA, Al-Kahtani AA, El-Azhary AA (2005) J Phys Chem A 109:3694

    Article  CAS  Google Scholar 

  5. El-Azhary AA, Al-Kahtani AA (2005) J Phys Chem A 109:8041

    Article  CAS  Google Scholar 

  6. Goto H, Osawa E (1989) J Am Chem Soc 111:8950

    Article  CAS  Google Scholar 

  7. Goto H, Osawa E (1993) J Chem Soc Perkin Trans 2:187

    Google Scholar 

  8. Goto H, Osawa E CONFLEX 3, QCPE, p 40

  9. Goto H, Osawa E CONFLEX, QCPE, #592; JCPE, p 21

  10. CAChe, Version 5.04, Fujitsu Limited (2003)

  11. Seidl ET, Schaefer HF (1991) J Phys Chem 95:3589

    Article  CAS  Google Scholar 

  12. Bultinck P, Goeminne A, Van de Vondel D (1999) J Mol Struct (Theochem) 467:211

    Article  CAS  Google Scholar 

  13. Hay BP, Rustad JR, Zipperer JP, Wester DW (1995) J Mol Struct (Theochem) 337:39

    Article  CAS  Google Scholar 

  14. El-Azhary AA, Al-Kahtani AA (2005) J Phys Chem A 109:4505

    Article  CAS  Google Scholar 

  15. Borgen G, Dale J, Daasvatn K, Krane J (1980) Acta Chem Sci B 34:249

    Article  Google Scholar 

  16. Al-Rusaese S, Al-Kahtani AA, El-Azhary AA (2006) J Phys Chem A 110:8676

    Article  CAS  Google Scholar 

  17. Rodriguez JD, Kim D, Tarakeshwar P, Lisy JM (2010) J Phys Chem A 114:1514

    Article  CAS  Google Scholar 

  18. Wolf RE, Hartman JR, Storey JME, Foxman BM, Cooper SR (1987) J Am Chem Soc 109:4328

    Article  CAS  Google Scholar 

  19. Robinson GH, Sangokoya SA (1988) J Am Chem Soc 110:1494

    Article  CAS  Google Scholar 

  20. Hill ES, Feller D (2000) J Phys Chem A 104:652

    Article  CAS  Google Scholar 

  21. Bultinck P, Huyghebaert A, Van Alsenoy C, Goeminne A (2001) J Phys Chem A 105:11266

    Article  CAS  Google Scholar 

  22. Raithby PR, Shields GP, Allen FH (1997) Acta Cryst B53:241

    CAS  Google Scholar 

  23. Yates PC, Richardson CM (1996) J Mol Struct (Theochem) 363:17

    Article  CAS  Google Scholar 

  24. El-Azhary AA, Suter HU (1996) J Phys Chem 100:15056

    Article  CAS  Google Scholar 

  25. El-Azhary AA, Hilal RA (1997) Spectrochim Acta A 53:1365

    Article  Google Scholar 

  26. Altmann JA, Handy NC, Ingamells VE (1996) Int J Quantum Chem 57:533

    Article  CAS  Google Scholar 

  27. Altmann JA, Handy NC, Ingamells VE (1997) Mol Phys 92:339

    CAS  Google Scholar 

  28. Maung N (1999) J Mol Struct (Theochem) 460:159

    Article  CAS  Google Scholar 

  29. Niehaus TA, Elstner M, Frauenheim Th, Suhai S (2001) J Mol Struct (Theochem) 541:185

    Article  CAS  Google Scholar 

  30. Leach R (2001) Molecular modelling, principles and applications, 2nd edn. Pearson Education Limited, England

    Google Scholar 

  31. Goto H, Ohta K, Kamakura T, Obata S, Nakayama N, Matsumoto T, Osawa E (2004) Conflex corp., Tokyo

  32. Halgren TA (1996) J Comp Chem 17:490

    Article  CAS  Google Scholar 

  33. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  34. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    Article  CAS  Google Scholar 

  35. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  36. Schuchardt KL, Didier BT, Elsethagen T, Sun LS, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B. 04. Gaussian, Inc., Pittsburgh

    Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B 01. Gaussian, Inc, Wallingford

    Google Scholar 

  39. Levason W, Matthews ML, Patel R, Reid G, Webster M (2003) New J Chem 27:1784

    Article  CAS  Google Scholar 

  40. Robinson GH, Sangokoya SA (1988) J Am Chem Soc 110:1494

    Article  CAS  Google Scholar 

  41. Baker PK, Harris SD, Durrant MC, Hughes DL, Richards RL (1995) Acta Crystallogr Sect C Cryst Struct Commun 51:697

    Article  Google Scholar 

  42. Blake AJ, Cristiani F, Devillanova FA, Garau A, Gilby LM, Gould RO, Isaia F, Lippolis V, Parsons S, Radek C, Schroder M (1997) J Chem Soc Dalton Trans 1337

  43. Brooks NR, Blake AJ, Champness NR, Cooke PA, Hubberstey P, Proserpio DM, Wilson C, Schroder M (2001) J Chem Soc Dalton Trans 456

  44. Pett VB, Diaddario Junior LL, Dockal ER, Corfield PW, Ceccarelli C, Glick MD, Ochrymowycz LA, Rorabacher DB (1983) Inorg Chem 22:3661

    Article  CAS  Google Scholar 

  45. Helm ML, Hill LL, Lee JP, Van Derveer DG, Grant GJ (2006) Dalton Trans 3534

  46. Blake AJ, Wan-Sheung L, Lippolis V, Parsons S, Schroder M (2007) Acta Crystallogr Sect B Struct Sci 63:81

    Article  Google Scholar 

  47. Watzky MA, Waknine D, Heeg MJ, Endicott JF, Ochrymowyzc LA (1993) Inorg Chem 32:4882

    Article  CAS  Google Scholar 

  48. Blake AJ, Holder AJ, Reid G, Schroder M (1994) J Chem Soc Dalton Trans 627

  49. Pickardt J, von Chrzanowski L, Steudel R, Borowski M (2004) Z Naturforsch B Chem Sci 59b:1077

    Google Scholar 

  50. Patel B, Reid G (2000) J Chem Soc Dalton Trans 1303

  51. Willey GR, Lakin MT, Alcock NW (1992) J Chem Soc Dalton Trans 591

  52. Krotz AH, Kuo LY, Barton JK (1993) Inorg Chem 32:5963

    Article  CAS  Google Scholar 

  53. Santos TM, Goodfellow BJ, Madureira J, Pedrosa de Jesus J, Felix V, Drew MGB (1999) New J Chem 23:1015

    Article  CAS  Google Scholar 

  54. Shan N, Adams H, Thomas JA (2006) Inorg Chim Acta 359:759

    Article  CAS  Google Scholar 

  55. Blake AJ, Halcrow MA, Schroder MJ (1994) Chem Soc Dalton Trans 1463

  56. Newell M, Ingram JD, Easun TL, Vickers SJ, Adams H, Ward MD, Thomas JA (2006) Inorg Chem 45:821

    Article  CAS  Google Scholar 

  57. Goodfellow BJ, Pacheco SMD, Pedrosa de Jesus J, Felix V, Drew MGB (1997) Polyhedron 16:3293

    Article  CAS  Google Scholar 

  58. Adams H, Amado AM, Felix V, Mann BE, Antelo-Martinez J, Newell M, Ribeiro-Claro PJA, Spey SE, Thomas JA (2005) Chem Eur J 11:2031

    Article  CAS  Google Scholar 

  59. To make sure that this C4 conformation is the same as the C4 conformation reported in Refs. 20 and 21, energy of this conformation was calculated at the HF/3-21G and HF/6-31G** levels. It was found that this conformation has the same relative energy as the C4 conformation mentioned in Refs. 20 and 21

  60. Pullman A, Giessner-Prettre C, Kruglyak YV (1975) Chem Phys Lett 35:156

    Article  CAS  Google Scholar 

  61. More MB, Glendening ED, Ray D, Feller D, Armentrout PB (1996) J Phys Chem 101:1605

    Article  Google Scholar 

  62. Feller D, Apra E, Nichols JA, Bernhold DE (1996) J Chem Phys 105:1940

    Article  CAS  Google Scholar 

  63. Ray D, Feller D, More MB, Glendening ED, Armentrout PB (1996) J Phys Chem 100(40):16116

    Article  CAS  Google Scholar 

  64. More MB, Ray D, Armentrout BA (1997) J Phys Chem A 101:831

    Article  CAS  Google Scholar 

  65. More MB, Ray D, Armentrout BA (1997) J Phys Chem A 101:7007

    Article  CAS  Google Scholar 

  66. Hill SE, Glendening ED, Feller D (1997) J Phys Chem A 101:6125

    Article  CAS  Google Scholar 

  67. Hill SE, Feller D, Glendening ED (1998) J Phys Chem A 102:3813

    Article  CAS  Google Scholar 

  68. Paulsen MD, Rustad JR, Hay BP (1997) J Mol Struct (Theochem) 397:1

    Article  CAS  Google Scholar 

  69. Hay YL, Chakraborty AR (1994) J Phys Chem 98:11193

    Article  Google Scholar 

  70. Hay YL, Chakraborty AR (1993) J Phys Chem 97:11291

    Article  Google Scholar 

  71. Hay YL, Chakraborty AR (1992) J Phys Chem 96:6410

    Article  Google Scholar 

  72. Hay YL, Chakraborty AR (1991) J Phys Chem 95:10781

    Article  Google Scholar 

  73. Jagannadh B, Kunwar AC, Thangavelu RP, Osawa E (1996) J Phys Chem 100:14339

    Article  CAS  Google Scholar 

  74. Glendening ED, Feller D, Thompson MA (1994) J Am Chem Soc 116:10657

    Article  CAS  Google Scholar 

  75. Glendening ED, Feller D (1996) J Am Chem Soc 118:6052

    Article  CAS  Google Scholar 

  76. Thompson MA, Glendening ED, Feller D (1994) J Phys Chem 98:10465

    Article  CAS  Google Scholar 

  77. Groth P (1982) Acta Chem Scand A 36:109

    Article  Google Scholar 

  78. Lee S, Wyttenbach T, von Helden G, Bowers MT (1995) J Am Chem Soc 117:10159

    Article  CAS  Google Scholar 

  79. Seiler P, Dobler M, Dunitz JD (1974) Acta Crystallogr B 30:2744

    Article  Google Scholar 

  80. Dobler M, Phizackerley RP (1974) Acta Crystallogr B 30:2748

    Article  Google Scholar 

  81. Bailey SI, Engehardt LM, Leurg W-P, Raston CL, Ritchie IM, White AH (1985) J Chem Soc Dalton Trans 1747

  82. The experimental value of the SCCS dihedral angle of 186.6° and the calculated SCCS dihedral angle at the HF/6-31+G level of 187.7° reported in Ref. 20 must be a typing error. We calculated optimized geometry at the HF/6-31+G* level and the obtained SCCS dihedral angle was 172.3°. In addition, the experimental value of the SCCS dihedral angle reported in Ref. 18 is 173.4° and in Ref. 19 is 173.6°, Table 2

  83. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  84. Cooper TE, Carl DR, Oomens J, Steill JD, Armentrout PB (2011) J Phys Chem A 115:5408

    Article  CAS  Google Scholar 

  85. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  86. Del Bene JE, Mettee HD, Frisch MJ, Luke BT, Pople JA (1983) J Phys Chem 87:3279

    Article  CAS  Google Scholar 

  87. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Acc. doi:10.1007/s00214-011-0914-z, Published online of 10 Mar 2011

  88. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Acc. doi: 10.1007/s00214-011-0941-9, Published online on 03 June 2011

  89. Zhao Y, Truhlar DG (2008) Theor Chim Acta 120:215

    Article  CAS  Google Scholar 

  90. Zhao Y, Truhlar DG (2008) Theor Chem Acc 119:525

    Article  CAS  Google Scholar 

  91. Zhao Y, Truhlar DG (2008) Acc Chem Res 141:157

    Article  Google Scholar 

  92. Song J-W, Tsuneda T, Sato T, Hirao K (2011) Theor Chem Acc. doi: 10.1007/s00214-011-0997-6. Published online on 30 July 2011

  93. Jalkanen KJ, Stephens PJ (1991) J Phys Chem 95:5446–5454

    Article  CAS  Google Scholar 

  94. Ozutsumi K, Natsuhara M, Ohtaki H (2807) Bull Chem Soc Jpn 62:1989

    Google Scholar 

  95. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Nafie LA, Cao X, Zhu F, Barron LD (2008) Theor Chem Acc 119:191–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NPST program by King Saud University Project Number: ADV400-02. Adel A. El-Azhary thanks Prof. M. S. El-Shall of the Virginia commonwealth University for hosting him during the summer of 2008 and the use of CDB installed on the University computer system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel A. El-Azhary.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Badri, N.I., Al-Jallal, N.A. & El-Azhary, A.A. Conformational study of the structure of free 12-thiacrown-4 and some of its cation metal complexes. Theor Chem Acc 130, 919–938 (2011). https://doi.org/10.1007/s00214-011-1043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1043-4

Keywords

Navigation