Skip to main content
Log in

Effect of non-specificity in shape, size, and dielectric properties on electromagnetic extinction and optical field enhancement from spherical nanolayered metal-dielectric particles

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Metal-dielectric composite nanospheres can amplify the scattering, emission, and absorption signature of molecules in their vicinity. Their ability to redistribute electromagnetic fields and produce pockets of greatly amplified fields is the dominant cause in achieving enhancement effects, for example, for surface-enhanced Raman spectroscopy. Extensive use of the field amplification has been made in devising ultrasensitive tag (label)–based spectroscopic techniques. For example, we have recently proposed nano-layered alternating metal-dielectric particles (nano-LAMP)—a symmetric implementation of which is a nanoparticle consisting of alternating metal and dielectric shells. Exceptional spatial and spectral control on amplification can be achieved by designing the size and location of metal and dielectric layers in this geometry. Theoretical understanding exists and an engineering optimization approach can be adapted to design a palette of probes exploiting this control and tunability. However, current fabrication techniques are limited in their ability to achieve the required specificity in the spherical configurations. Hence, we investigate here the effects of variability, introduced by fabrication approaches into the structure of nano-LAMPs, on their spectroscopic signature. In particular, theoretical results are presented for the effects on enhancement due to variability in size, shape, and dielectric environment in the cases of gold–silica, silver–silica, and copper–silica nano-LAMPs. The results obtained show that the shape and dielectric properties of the metal shell play a crucial role in experimentally realizing the specificity of the magnitude of the enhancement and determine the key parameters to control and test in experimental validations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faraday M (1857) Phil Trans of Royal Soc Lond 147:145–181

    Article  Google Scholar 

  2. Prasad PN (2004) Nanophotonics. Wiley, London

    Book  Google Scholar 

  3. Kawata S (2001) Near-field optics and surface plasmon polaritons. Springer, Berlin

    Book  Google Scholar 

  4. Van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S, Lasne D, Cognet L, Lounis B (2006) Phys Chem Phys 8:3486–3495

    Article  Google Scholar 

  5. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  6. Eustis S, El-Sayed MA (2005) Chem Soc Rev 35:209–217

    Article  Google Scholar 

  7. Noguez C (2007) J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  8. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) J Am Chem Soc 130:12616–12617

    Article  CAS  Google Scholar 

  9. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  10. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  11. Doering WE, Piotti ME (2007) Adv Mater 19:3100–3108

    Article  CAS  Google Scholar 

  12. Kneipp J, Kneipp H, Kneipp K (2008) Chem Soc Rev 37:1052–1060

    Article  CAS  Google Scholar 

  13. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  14. Xu H (2005) Phys Rev B 72:0734051–0734054

    Google Scholar 

  15. Chen K, Liu Y, Ameer G, Backman V (2005) J Biomed Opt 10:024005-1-6

    Google Scholar 

  16. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Appl Phys Lett 82:257–259

    Article  CAS  Google Scholar 

  17. Kodali AK, Bhargava R (2008) Proc SPIE 7032:70320V-1-10

    Google Scholar 

  18. Wustholz KL, Henry A-I, McMohan M, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) J Am Chem Soc 132:10903–10910

    Article  CAS  Google Scholar 

  19. Bukasov R, Shumkaer-Parry JS (2007) Nano Lett 7:1113–1118

    Article  CAS  Google Scholar 

  20. Kodali AK, Llora X, Bhargava R (2010) Proc Natl Acad Sci 107:13620–13625

    Article  CAS  Google Scholar 

  21. Li JF, Huang YF, Ding Y, Yuang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Nat Lett 464:392–395

    Article  CAS  Google Scholar 

  22. Su X, Zhang J, Sun L, Koo T-W, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Nano Lett 5:49–54

    Article  CAS  Google Scholar 

  23. Kodali AK, Bhargava R (2010) Chapter 15, Oxford Handbook of Science and Technology. Oxford University Press, Oxford

    Google Scholar 

  24. Averitt RD, Westcott SL, Halas NJ (1999) J Opt Soc Am A 16:1824–1832

    Article  CAS  Google Scholar 

  25. Hu Y, Fleming RC, Drezek RA (2008) Opt Exp 16:19579–19591

    Article  CAS  Google Scholar 

  26. Kodali AK, Schulmerich MV, Palekar R, Llora X, Bhargava R (2010) Opt Exp 18:23302–23313

    Article  CAS  Google Scholar 

  27. Radloff C, Halas NJ (2004) Nano Lett 4:1323–1327

    Article  CAS  Google Scholar 

  28. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419–422

    Article  CAS  Google Scholar 

  29. Lim DK, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M (2011) Nature Nanotech 6:452–460

    Article  CAS  Google Scholar 

  30. Johnson BR (1996) Appl Opt 35:3286–3296

    Article  CAS  Google Scholar 

  31. Oldenburg SJ, Averitt RD, Westcott S, Halas NJ (1998) Chem Phys Lett 288:243–248

    Article  CAS  Google Scholar 

  32. See KH, Mullins ME, Mills OP, Heiden PA (2005) Nanotechnology 16:1950–1959

    Article  CAS  Google Scholar 

  33. Caruso F, Spasova M, Salgueirino-Maceira V, Liz-Marzan LM (2001) Adv Mater 13:1090–1094

    Article  CAS  Google Scholar 

  34. Liz-Marzan LM, Correa Duarte MA, Pastoriza-Santos I, Mulvaney P, Ung T, Giersig M, and Kotov NA (2001) Core-shell nanoparticles and assemblies there of, Chapter 5. In: Nalwa HS (ed) Handbook of Surfaces and Interfaces of Materials, vol 3, pp 189–237

  35. Xia X, Liu Y, Backman V, Ameer GA (2006) Nanotechnology 17:5435

    Article  CAS  Google Scholar 

  36. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  37. Palik ED (ed) (1991) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  38. Khlebtsov B, Khlebtsov N (2006) J Biomed Opt 11:044002

    Google Scholar 

  39. Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) J Phys Chem B 108:1224–1229

    Article  CAS  Google Scholar 

  40. Moskovits M (2005) J Raman Spec 36:485–496

    Article  CAS  Google Scholar 

  41. Morton SM, Jensen L (2009) J Am Chem Soc 131:4090–4098

    Article  CAS  Google Scholar 

  42. Schatz GC, Van Duyne RP (2006) Handbook of vibrational spectroscopy. Wiley, London

    Google Scholar 

  43. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Langmuir 19:4784–4790

    Article  CAS  Google Scholar 

  44. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, London

    Google Scholar 

  45. Wiscombe WJ (1980) Appl Opt 19:1505–1509

    Article  CAS  Google Scholar 

  46. Ghosh G (1999) Optc Comm 163:95–102

    Article  CAS  Google Scholar 

  47. Leupacher W, Penzkofer A (1984) Appl Opt 23:1554–1557

    Article  CAS  Google Scholar 

  48. Draine BT, Flatau PJ (1994) J Opt Soc Am 4:1491–1499

    Article  Google Scholar 

Download references

Acknowledgments

The study reported in this manuscript is supported in part by the National Science Foundation under Grant No. CHE 0957849 and the Beckman Institute’s Seeding New Research Frontiers Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Bhargava.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodali, A.K., Bhargava, R. Effect of non-specificity in shape, size, and dielectric properties on electromagnetic extinction and optical field enhancement from spherical nanolayered metal-dielectric particles. Theor Chem Acc 130, 991–1000 (2011). https://doi.org/10.1007/s00214-011-1038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1038-1

Keywords

Navigation