Skip to main content
Log in

Predicting the Size of Silver Nanoparticles from Their Optical Properties

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, localized surface plasmon resonance (LSPR) of the spherical silver nanoparticles (AgNPs) was evaluated based on experimental and theoretical viewpoints. In the experimental phase, a facile seed-mediated method was employed to synthesize spherical AgNPs with different sizes. As expected, an increase in the size of AgNPs resulted in a red-shift in LSPR peak position from 390 to 460 nm. Besides, the theoretical LSPR peak position of AgNPs was derived from Mie theory using different refractive indices databases. A comparison between the experimentally obtained data and the theoretical predictions indicated that “Palik” database can lead to a more reliable data regarding the size of AgNPs. Finally, a relation was established for the prediction and estimation of AgNPs’ size through a simple measurement of LSPR position with a UV-Vis spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Talapin D, Lee J, Kovalenko M, Shevchenko E (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458

    Article  CAS  Google Scholar 

  2. Xia Y, Xiong Y, Lim B, Skrabalak S (2008) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  Google Scholar 

  3. Sun B, Barnard A (2017) The impact of size and shape distributions on the electron charge transfer properties of silver nanoparticles. Nanoscale. 9(34):12698–12708

    Article  CAS  Google Scholar 

  4. Alshehri A, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4(12):7007–7010

    Article  CAS  Google Scholar 

  5. Rycenga M, Cobley C, Zeng J, Li W, Moran C, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712

    Article  CAS  Google Scholar 

  6. Samai S, Qian Z, Ling J, Guye K, Ginger D (2018) Optical properties of reconfigurable polymer/silver nanoprism hybrids: tunable color and infrared scattering contrast. ACS Appl Mater Interfaces 10(10):8976–8984

    Article  CAS  Google Scholar 

  7. Dahlous K, Abd-Elkader O, Fouda M, Al Othman Z, El-Faham A (2019) Eco-friendly method for silver nanoparticles immobilized decorated silica: synthesis & characterization and preliminary antibacterial activity. J Taiwan Inst Chem Eng 95:324–331

    Article  CAS  Google Scholar 

  8. Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551

    Article  CAS  Google Scholar 

  9. Pareek V, Gupta R, Panwar J (2018) Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C 90:739–749

    Article  CAS  Google Scholar 

  10. Amirjani A, Haghshenas D (2018) Modified Finke–Watzky mechanisms for the two-step nucleation and growth of silver nanoparticles. Nanotechnology 29(50):505602

    Article  Google Scholar 

  11. Amirjani A, Haghshenas D (2018) Ag nanostructures as the surface plasmon resonance (SPR)˗based sensors: a mechanistic study with an emphasis on heavy metallic ions detection. Sensors Actuators B Chem 273:1768–1779

    Article  CAS  Google Scholar 

  12. Hua C, Shen L, Pun E, Li D, Lin H (2018) Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices. Opt Mater 78:72–81

    Article  CAS  Google Scholar 

  13. Kuisma M, Sakko A, Rossi T, Larsen A, Enkovaara J, Lehtovaara L et al (2015) Localized surface plasmon resonance in silver nanoparticles: atomistic first-principles time-dependent density-functional theory calculations. Phys Rev B 91(11):115431

    Article  Google Scholar 

  14. Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen N et al (2015) Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat Commun 6(1):8788

    Article  CAS  Google Scholar 

  15. Anderson LJE, Mayer KM, Fraleigh RD, Yang Y, Lee S, Hafner JH (2010) Quantitative measurements of individual gold nanoparticle scattering cross sections. J Phys Chem C 114:11127–11132

    Article  CAS  Google Scholar 

  16. Kruk S, Kivshar Y (2017) Functional meta-optics and Nanophotonics governed by Mie resonances. ACS Photonics 4(11):2638–2649

    Article  CAS  Google Scholar 

  17. Amirjani A, Koochak N, Haghshenas D (2019) Investigating the shape and size-dependent optical properties of silver nanostructures using UV–vis spectroscopy. J Chem Educ 96(11):2584–2589

    Article  CAS  Google Scholar 

  18. Amirjani A, Haghshenas D (2019) Facile and on−line colorimetric detection of Hg2+based on localized surface plasmon resonance (LSPR) of Ag nanotriangles. Talanta 192:418–423

    Article  CAS  Google Scholar 

  19. Amirjani A, Koochak N, Haghshenas D (2018) Synthesis of silver nanotriangles with tunable edge length: a promising candidate for light harvesting purposes within visible and near–infrared ranges. Mat Res Express 6(3):036204

    Article  Google Scholar 

  20. Jain V, Rattan S, Verma A (2017) Recent trends in materials and devices. Springer International Publishing, Cham

    Book  Google Scholar 

  21. Papoff F, Hourahine B (2011) Geometrical Mie theory for resonances in nanoparticles of any shape. Opt Express 19(22):21432–21444

    Article  CAS  Google Scholar 

  22. Krstić J, Spasojević J, Radosavljević A, Šiljegovć M, Kačarević-Popović Z (2014) Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly(vinyl alcohol) blends. Radiat Phys Chem 96:158–166

    Article  Google Scholar 

  23. Duque J, Blandón J, Riascos H (2017) Localized Plasmon resonance in metal nanoparticles using Mie theory. J Phys Conf Ser 850:012017

    Article  Google Scholar 

  24. Kluczyk K, Jacak W (2016) Damping-induced size effect in surface plasmon resonance in metallic nano-particles: comparison of RPA microscopic model with numerical finite element simulation (COMSOL) and Mie approach. J Quant Spectrosc Radiat Transf 168:78–88

    Article  CAS  Google Scholar 

  25. Briard P, Wang J, Han Y (2016) Shaped beam scattering by an aggregate of particles using generalized Lorenz–Mie theory. Opt Commun 365:186–193

    Article  CAS  Google Scholar 

  26. Rahaman M, Kemp B (2016) Revisiting Mie’s scattering theory for the analysis of the plasmonic resonance of metal nanospheres. J Electromagnet Waves Appl 30(16):2088–2098

    Article  Google Scholar 

  27. Thomas S, Matyssek C, Hergert W, Arnold M, Kiewidt L, Karamehmedović M et al (2015) Application of generalized Mie theory to EELS calculations as a tool for optimization of plasmonic structures. Plasmonics. 11(3):865–874

    Article  Google Scholar 

  28. Babar S, Weaver J (2015) Optical constants of Cu, Ag, and Au revisited. Appl Opt 54(3):477

    Article  CAS  Google Scholar 

  29. Hagemann H, Gudat W, Kunz C (1975) Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J Opt Soc Am 65(6):742

    Article  CAS  Google Scholar 

  30. Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  31. McPeak K, Jayanti S, Kress S, Meyer S, Iotti S, Rossinelli A, Norris DJ (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3):326–333

    Article  CAS  Google Scholar 

  32. Palik E, Ghosh G (1998) Handbook of optical constants of solids. Academic Press, San Diego

    Google Scholar 

  33. Stahrenberg K, Herrmann T, Wilmers K, Esser N, Richter W, Lee M (2001) Optical properties of copper and silver in the energy range 2.5–9.0 eV. Phys Rev B 64(11):115111

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to dedicate this paper to martyr Mohsen Vezvaei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Fatmehsari Haghshenas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirjani, A., Firouzi, F. & Haghshenas, D.F. Predicting the Size of Silver Nanoparticles from Their Optical Properties. Plasmonics 15, 1077–1082 (2020). https://doi.org/10.1007/s11468-020-01121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01121-x

Keywords

Navigation