Skip to main content
Log in

“Gold standard” coupled-cluster study of acetylene pentamers and hexamers via molecular tailoring approach

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Due to high scaling order of MP2 and CCSD(T) methods, it is either difficult or at times even impossible to treat even moderately sized molecular systems with elaborate basis sets such as aug-cc-pVXZ (X = D, T, Q). In the present work, several structures of acetylene pentamers and hexamers are explored at MP2 and CCSD(T) levels of theory as prototypical examples of clusters bound by CH···π interactions. To enable this investigation, fragment-based method Molecular Tailoring Approach (MTA) is employed. It is shown that these acetylene assemblies can be treated with substantial reduction in computational resources and time, yet retaining a sub-millihartree accuracy in the energy. Further, using standard extrapolation methodologies, stabilization energies at the complete basis set limit of the acetylene clusters under consideration are determined at MP2 and CCSD(T) levels of theory. To test out the feasibility of treating a large cluster at MP2 level, a demonstrative calculation on a dodecamer of acetylene is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chenoweth K, Dykstra CD (2003) Theor Chem Acc 110:100

    Article  CAS  Google Scholar 

  2. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145

    Article  CAS  Google Scholar 

  3. Chourasia M, Sastry GM, Sastry GN (2011) Int J Biol Macromol 48:540

    Article  CAS  Google Scholar 

  4. Burley SK, Petsko GA (1985) Science 229:23

    Article  CAS  Google Scholar 

  5. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction: evidence, nature, and consequences. Wiley, New York

    Google Scholar 

  6. Jones PG, Dix I, Hopf H (2007) Acta Cryst C 63:468

    Article  Google Scholar 

  7. Řezáč J, Fanfrlík J, Salahub D, Hobza P (2009) J Chem Theory Comput 5:1749

    Article  Google Scholar 

  8. Vaupel S, Brutschy B, Tarakeshwar P, Kim KS (2006) J Am Chem Soc 128:5416

    Article  CAS  Google Scholar 

  9. Singh NJ, Lee HM, Hwang I-C, Kim KS (2007) Supramol Chem 19:321

    Article  CAS  Google Scholar 

  10. Lee JY, Hong BH, Kim WY, Min SK, Kim Y, Jouravlev MV, Bose R, Kim KS, Hwang I-C, Kaufman LJ, Wong CW, Kim P, Kim KS (2009) Nature 460:498

    Article  CAS  Google Scholar 

  11. Karaminkov R, Chervenkov S, Neusser HJ, Ramanathan V, Chakraborty T (2009) J Chem Phys 130:034301

    Article  CAS  Google Scholar 

  12. Kenta S, Fujii A, Mikami N, Tsuzuki S (2007) J Phys Chem A 111:753

    Article  Google Scholar 

  13. Sinnokrot OM, Sherrill DC (2006) J Phys Chem A 110:10656

    Article  CAS  Google Scholar 

  14. Mishra BK, Samuel JA, Sathyamurthy N (2010) J Phys Chem A 114:9606

    Article  CAS  Google Scholar 

  15. Sundararajan K, Sankaran K, Vishwanathan KS, Kulkarni AD, Gadre SR (2002) J Phys Chem A 106:1504

    Article  CAS  Google Scholar 

  16. Karthikeyan S, Lee HM, Kim KS (2010) J Chem Theory Comput 6:3190

    Article  CAS  Google Scholar 

  17. Shuler K, Dykstra CE (2000) J Phys Chem A 104:11522

    Article  CAS  Google Scholar 

  18. Ohshima Y, Matsumoto Y, Takami M, Kuchitsu K (1988) Chem Phys Lett 147:1

    Article  CAS  Google Scholar 

  19. Bone RGA, Amos RD, Handy NC (1990) J Chem Soc Faraday Trans 86:1931

    Article  CAS  Google Scholar 

  20. Yu J, Shujun S, Bloor JE (1990) J Phys Chem 94:5589

    Article  CAS  Google Scholar 

  21. Takeuchi H (2010) J Comp Chem 31:1699

    CAS  Google Scholar 

  22. Garrison SL, Sandler SI (2004) J Phys Chem B 108:18972

    Article  CAS  Google Scholar 

  23. Mishra BK, Sathyamurthy N (2005) J Phys Chem A 109:6

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  25. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107

    Article  CAS  Google Scholar 

  26. Halkier A, Klopper W, Helgaker T, Jørgensen P, Taylor PR (1999) J Chem Phys 111:9157

    Article  CAS  Google Scholar 

  27. Shipman LL, Christoffersen RE (1972) Proc Nat Acad Sci USA 69:3301

    Article  CAS  Google Scholar 

  28. Yang W (1991) Phys Rev Lett 66:1432

    Google Scholar 

  29. Gadre SR, Shirsat RN, Limaye AC (1994) J Phys Chem 98:9165

    Article  CAS  Google Scholar 

  30. Babu K, Gadre SR (2003) J Comput Chem 24:484

    Article  CAS  Google Scholar 

  31. Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006) J Chem Phys 125:104109

    Article  CAS  Google Scholar 

  32. Rahalkar AP, Ganesh V, Gadre SR (2008) J Chem Phys 129:234101

    Article  Google Scholar 

  33. Rahalkar AP, Gadre SR (2011) J Chem Sci (in Press)

  34. Kitaura K, Ikeo E, Asada T, Nakano T, Ubeyasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  35. Fedorov DG, Jensen JH, Deka RC, Kitaura K (2008) J Phys Chem A 111:6904

    Article  Google Scholar 

  36. Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106

    Article  Google Scholar 

  37. Deev V, Collins MA (2005) J Chem Phys 122:154102

    Article  Google Scholar 

  38. Zhang DW, Zhang JZH (2003) J Chem Phys 119:3599

    Article  CAS  Google Scholar 

  39. Li W, Li S (2004) J Chem Phys 121:6649

    Article  CAS  Google Scholar 

  40. Rahalkar AP, Katouda M, Gadre SR, Nagase S (2010) J Comput Chem 31:2405

    CAS  Google Scholar 

  41. Rahalkar AP, Yeole SD, Ganesh V, Gadre SR (2011) In: Zaleśny R, Papadopoulos MG, Mezey PG, Leszczynski J (eds) Linear scaling techniques in computational chemistry and physics. Springer, New York, p 199

  42. Yeole SD, Gadre SR (2010) J Chem Phys 132:094102

    Article  Google Scholar 

  43. Elango M, Subramanian V, Rahalkar AP, Gadre SR, Sathyaurthy N (2008) J Phys Chem A 112:7699

    Article  CAS  Google Scholar 

  44. Mahadevi AS, Rahalkar AP, Gadre SR, Sastry GN (2010) J Chem Phys 133:164308

    Article  Google Scholar 

  45. Gadre SR, Jovan JKV, Rahalkar AP (2010) J Chem Sci 122:1

    Article  Google Scholar 

  46. Limaye AC, Gadre SR (2001) Curr Sci (India) 80:1296

    CAS  Google Scholar 

  47. The GAUSSIAN 09 package: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE,Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, FarkasÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1 Gaussian, Inc., Wallingford

  48. The package MeTA Studio available at: http://code.google.com/p/metastudio/ (See: Ganesh V (2009) J Comp Chem 30:661)

  49. The GAMESS package: Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347 For further details: http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  50. The CFOUR package: Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J and Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJAa, Jørgensen P, and Olsen J), and ECP routines by Mitin AV and van Wüllen C

Download references

Acknowledgments

APR is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for award of research fellowship and Center for Development of Advanced Computing (C-DAC), Pune, for computational resources. Department of Science and Technology (DST), New Delhi, is gratefully acknowledged by SRG for the award of J. C. Bose fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar R. Gadre.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahalkar, A.P., Mishra, B.K., Ramanathan, V. et al. “Gold standard” coupled-cluster study of acetylene pentamers and hexamers via molecular tailoring approach. Theor Chem Acc 130, 491–500 (2011). https://doi.org/10.1007/s00214-011-1029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1029-2

Keywords

Navigation