Skip to main content
Log in

Geometrical structure and stability of buckminsterfullerene complexes containing mono- and poly-atomic molecules

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Structure vis-à-vis the stability of mono- and poly-atomic buckminsterfullerene (C\(_{60}\)) complexes are capable of providing intrigue information about these systems. To obtain an insight of these complexes, geometrical parameters of fullerene encapsulated noble gas elements (He, Ne and Ar) and poly-atomic molecules (H\(_2\), H\(_2\)O, NH\(_3\) and CH\(_4\)) are computed at the restricted Hartree-Fock (RHF) as well as density functional (DFT) at the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theories. Ellipticity values estimated from mean maximal and mean minimal diameters of these endohedrals are found to be \(\sim\)0.2 which indicate that these complexes are of spheroidal shape. It is further observed that the fullerene ring is resilient to deformation and the structural parameters of these systems depend more on the method than the embedded system. Binding energies of these complexes are computed at the RHF, DFT, second order Möller-Plesset perturbation (MP2), spin-component scaled (SCS) MP2 and coupled-cluster with single and double excitation (CCSD) level of theories to assess electron correlation effects on the stability of these endohedrals. Resulted energies from the RHF procedure are found to be positive (energetically unstable), whereas those yielded by MP2 and SCS-MP2 procedures predict these endohedrals to be stable. CCSD calculations also exhibit similar trend except for H\(_2\)O complex. Binding energies obtained using RHF, MP2, SCS-MP2 and CCSD procedures with correlation consistent polarized basis indicate a strong correlation between the basis set and the stability of these endohedral complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Becker L, Poreda R J and Bunch T E 2000 Fullerenes: An extraterrestrial carbon carrier phase for noble gases PNAS 97 2979

  2. Zakrzewski V G, Dolgounitcheva O and Ortiz J V 2014 Electron Propagator Calculations on the Ground and Excited States of C\(_{60}^{-}\) J. Phys. Chem. A 118 7424

    CAS  PubMed  Google Scholar 

  3. (a) Averbuch V and Cederbaum L S 2006 Interatomic Electronic Decay in Endohedral Fullerenes Phys. Rev. Lett. 96 053401; (b) Klaiman S, Gromov E V and Cederbaum L S 2013 Extreme Correlation Effects in the Elusive Bound Spectrum of C\(_{60}^{-}\) J. Phys. Chem. Lett. 4 3319; (c) Klaiman S, Gromov E V and Cederbaum L S 2014 All for one and one for all: accommodating an extra electron in C\(_{60}\) Phys. Chem. Chem. Phys. 16 13287

  4. Voora V K, Cederbaum L S and Jordan K D 2013 Existence of a Correlation Bound s-Type Anion State of C\(_{60}\) J. Phys. Chem. Lett. 4 849

    CAS  PubMed  Google Scholar 

  5. Darzynkiewicz R B and Scuseria G E 1997 Noble Gas Endohedral Complexes of C\(_{60}\) Buckminsterfullerene J. Phys. Chem. A 101 7141

    CAS  Google Scholar 

  6. Sure R, Tonner R and Schwerdtfeger P 2014 A systematic study of rare gas atoms encapsulated in small fullerenes using dispersion corrected density functional theory J. Comp. Chem. 36 88

    Google Scholar 

  7. Patchkovskii S and Thiel W 1997 Equilibrium yield for helium incorporation into buckminsterfullerene: Quantum-chemical evaluation J. Chem. Phys. 106 1796

    CAS  ADS  Google Scholar 

  8. Albert V V, Sabin J R and Harris F E 2007 Simulated structure and energetics of endohedral complexes of noble gas atoms in Buckminsterfullerene Int. J. Quantum Chem. 107 3061

    CAS  ADS  Google Scholar 

  9. Chaudhuri S K, Chaudhuri R K, Mukherjee P K and Chattopadhyay S 2017 A confinement induced spectroscopic study of noble gas atoms using equation of motion architecture: Encapsulation within fullerene’s voids J. Chem. Phys. 147 034111

    PubMed  ADS  Google Scholar 

  10. Saroj A, Ramanathan V, Mishra B K, Panda A N and Sathyamurthy N 2022 Improved Estimates of Host-Guest Interaction Energies for Endohedral Fullerenes Containing Rare Gas Atoms, Small Molecules, and Cations Chem. Phys. Chem. 23 e202200413

    CAS  PubMed  Google Scholar 

  11. Mallick S, Mishra B K, Kumar P and Sathyamurthy N 2021 Effect of confinement on ammonia inversion Eur. Phys. J. D 75 113

    CAS  ADS  Google Scholar 

  12. Koner A, Kumar C and Sathyamurthy N 2018 Heat capacity of endohedral fullerenes Rg@C\(_{60}\) (Rg = He, Ne, Ar and Kr) Mol. Phys. 116 2728

    CAS  ADS  Google Scholar 

  13. Pyykkö P, Wang C, Straka M and Varra J 2007 A London-type formula for the dispersion interactions of endohedral A@B systems Phys. Chem. Chem. Phys. 9 2954

    PubMed  Google Scholar 

  14. Bühl M, Patchkovskii S and Thiel W 1997 Interaction energies and NMR chemical shifts of noble gases in C\(_{60}\) Chem. Phys. Lett. 275 14

    ADS  Google Scholar 

  15. Gao H, Sun Y, Zhang J, Wang Q, Wu Y and Bai H 2021 Understanding endohedral behaviors of ten-electron atomic and cluster system inside C60 from first-principles Physica E 127 114532

  16. Saunders M and Cross R J 2002 In Endofullerenes T Akasaka T and S Nagase (Eds.) (Kluwer, Dordrecht: Springer) and references therein.

  17. Saunders M, Cross R J, Jiménez-Vázquez H A, Shimshi R and Khong A 1996 Noble Gas Atoms Inside Fullerenes Science 271 1693 and references therein.

    CAS  Google Scholar 

  18. Bacanu G R, Jafari T, Aouane Md et al. 2021 Experimental determination of the interaction potential between a helium atom and the interior surface of a C\(_{60}\) fullerene molecule J. Chem. Phys. 155 144302 and references therein.

    CAS  PubMed  ADS  Google Scholar 

  19. Herneit W 2002 Fullerene-based electron-spin quantum computer Phys. Rev. A 65 032322

    ADS  Google Scholar 

  20. Ju C, Suter D and Du J 2007 Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation Phys. Rev. A 75 012318

    ADS  Google Scholar 

  21. Krätschmer W, Lamb L D, Fostiropoulos K and Huffman D R 1990 Solid C\(_{60}\): A New Form of Carbon Nature 347 354

  22. Bakry R, Vallant R M, Najam-ul-Haq M, Rainer M, Szabo Z, Huck C W and Bonn G K 2007 Medicinal applications of fullerenes Int. J. Nanomed. 2 639

    CAS  Google Scholar 

  23. Smalley R E 1991 Great balls of carbon The Sciences 31 22

    Google Scholar 

  24. (a) Weiske T, Böhme D K, Hrušák J, Krätschmer W and Schwarz H 1991 Endohedral Cluster Compounds: Inclusion of Helium within C\(_{60}^{+}\) and C\(_{70}^{+}\) through Collision Experiments Angew. Chem. Int. Ed. Engl. 30 884; (b) Weiske T, Hrušák J, Böhme D K and Schwarz H 1991 Formation of endohedral carbon-cluster noble-gas compounds with high-energy bimolecular reactions: C\(_{60}^{+}\)He\(^{n+}\)Chem. Phys. Lett. 186 459

  25. Campbell E E B, Ehlich R, Heusler G, Knospe O and Sprang H 1998 Capture dynamics in collisions between fullerene ions and rare gas atoms Chem. Phys. 239 299

    CAS  Google Scholar 

  26. Moro L, Ruoff R S, Becker C H, Lorents V C and Malhotra R 1993 Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry J. Phys. Chem. 97 6801

    CAS  Google Scholar 

  27. Gromov E V, Klaiman S and Cederbaum L S 2015 Influence of caged noble-gas atom on the superatomic and valence states of C\(_{60}^{-}\) Mol. Phys. 113 2964

    CAS  ADS  Google Scholar 

  28. Shinohara H 2000 Endohedral metallofullerenes Rept. Prog. Phys. 63 843

    CAS  ADS  Google Scholar 

  29. Shinohara H and Tagmatarchis N 2015 in Endohedral Metallofullerenes: Fullerenes with Metal Inside (Wiley)

  30. (a) Saunders M, Jiménez-Vázquez H A, Cross R J and Poreda R J 1993 Stable Compounds of Helium and Neon: He@C\(_{60}\) and N@\(_{60}\) Science 259 1428; (b) Saunders M, Jiménez-Vázquez H A, Cross R J, Giblin D E and Poreda R J 1994 Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure J. Am. Chem. Soc. 116 2193

  31. Buchachenko A L 2001 Compressed Atoms J. Phys. Chem. B 105 5839

    CAS  Google Scholar 

  32. Chuang S C, Clemente F R, Khan S I, Houk K N and Rubin Y 2006 Approaches to open fullerenes: a 1,2,3,4,5,6-hexaadduct of C\(_{60}\) Org. Lett. 8 4525

    CAS  PubMed  Google Scholar 

  33. Rubin Y 1997 Organic Approaches to Endohedral Metallofullerenes: Cracking Open or Zipping Up Carbon Shells? Chem. Eur. J. 1009

    CAS  Google Scholar 

  34. Rubin Y, Jarrosson T, Wang G W, Bartberger M D, Houk K N, Schick G Saunders M and Cross R J 2001 Insertion of Helium and Molecular Hydrogen Through the Orifice of an Open Fullerene Angew. Chem. Int. Ed. 40 1543

    CAS  Google Scholar 

  35. Schick G, Jarrosson T and Rubin Y 1999 Formation of an Effective Opening within the Fullerene Core of C(60) by an Unusual Reaction Sequence Angew. Chem. Int. Ed. 38 2360

    CAS  Google Scholar 

  36. Komatsu K, Murata M and Murata Y 2005 Encapsulation of Molecular Hydrogen in Fullerene C\(_{60}\) by Organic Synthesis Science 307 238

  37. Murata Y, Murata M and Komatsu K 2003 100% Encapsulation of a Hydrogen Molecule into an Open-Cage Fullerene Derivative and Gas-Phase Generation of H\(_2\)@C\(_{60}\) J. Am. Chem. Soc. 125 7152

    CAS  PubMed  Google Scholar 

  38. Kurotobi K and Murata Y 2011 A Single Molecule of Water Encapsulated in Fullerene C\(_{60}\) Science 333 613

  39. Krachmalnicoff A, Levitt M H and Whitby R J 2014 An optimised scalable synthesis of H\(_2\)O@C\(_{60}\) and a new synthesis of H\(_2\)@C\(_{60}\) Chem. Commun. 50 13037

    CAS  Google Scholar 

  40. Krachmalnicoff A, Bounds R, Mamone S, Alom S, Concistré M, Meier B, Kouřil B, Light M E, Johnson M R, Rols S, Horsewill A J, Shugai A, Nagel U, Rõõm T, Carravetta M, Levitt M H and Whitby R J 2016 The Dipolar Endofullerene HF@C-60 Nat. Chem. 8 953

    CAS  PubMed  Google Scholar 

  41. Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu G R, Elliott S J, Light M E, Herniman J M, Langley G J, Levitt M H and Whitby R J 2019 First Synthesis and Characterization of CH\(_4\)@C\(_{60}\) Angew. Chem. Int. Ed. 58 5038

    CAS  Google Scholar 

  42. Parr R G and Yang W 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press)

    Google Scholar 

  43. (a) Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648; (b) Kim K and Jordan K D 1994 Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer J. Phys. Chem. 98 10089; (c) Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields J. Phys. Chem. 98 11623

  44. https://www.basissetexchange.org/.

  45. Krapp A and Frenking G 2007 Is This a Chemical Bond? A Theoretical Study of Ng\(_2\)@C\(_{60}\) (Ng=He, Ne, Ar, Kr, Xe) Chem. Eur. J. 13 8256

    CAS  PubMed  Google Scholar 

  46. Möller C and Plesset M S 1934 Note on an Approximation Treatment for Many-Electron Systems Phys. Rev. 46 618

    ADS  Google Scholar 

  47. (a) Čížek J 1966 On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods J. Chem. Phys. 45 4256; (b) Čížek J 1969 On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules In Advances in Chemical Physics R. LeFebvre and C Moser (Eds.); (c) Čížek J and Paldus 1975 Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems Adv. Chem. Phys. 9 105; (d) Bartlett R J and Silver W D 1975 Some aspects of diagrammatic perturbation theory Int. J. Quantum Chem. S9 183; (e) Bartlett R J 1989 Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry J. Phys. Chem. 93 1697

  48. (a) Löwdin P O 1955 Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction Phys. Rev. 97 1474; (b) Barr T L and Davidson E R 1970 Nature of the Configuration-Interaction Method in Ab Initio Calculations. I. Ne Ground State Phys. Rev. A 1 644; (c) Shavitt I, Rosenberg B J and Palalikit S 1976 Comparison of configuration interaction expansions based on different orbital transformations Int. J. Quantum Chem. 10 33; (d) Bender C F and Davidson E R 1967 Theoretical Calculation of the Potential Curves of the Be2 Molecule J. Chem. Phys. 47 4972; (e) Desjardins S J, Bawagan A D O, Liu Z F, Tan K H, Wang Y and Davidson E R 1995 Correlation states of ethylene J. Chem. Phys. 102 6385

  49. (a) Landau A, Khistyaev K, Dolgikh S and Krylov A I 2010 Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism J. Chem. Phys. 132 014109; (b) Pokhilko P, Izmodenov D and Krylov A I 2020 Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets J. Chem. Phys. 152 034105; (c) Gyevi-Nagy L., Kállay M., and Nagy P. R. 2021 Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications J. Chem. Theory Comput. 17 860; (d) Kumar A and Crawford T D 2017 Frozen Virtual Natural Orbitals for Coupled-Cluster Linear-Response Theory J. Phys. Chem. A 121 708; (e) Chamoli S, Surjuse K, Jangid B, Nayak M K and Dutta A K 2022 A reduced cost four-component relativistic coupled cluster method based on natural spinors J. Chem. Phys. 156 204120

  50. Helgaker T, Jørgensen P and Olsen J 2000 Molecular Electronic Structure Theory (New York: Wiley)

    Google Scholar 

  51. Grimme S, Antony J, Ehrlich S and Krieg H 2020 A consistent and accurate ab-initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132 154104

    ADS  Google Scholar 

  52. CFOUR, a quantum chemical program package written by Stanton J F, Gauss J, Cheng L, Harding M E, Matthews D A, Szalay P G with contributions from Auer A A, Bartlett R J, Benedikt U, Berger C, Bernholdt D E, Bomble Y J, Christiansen O, Engel F, Faber R, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale W J, Lipparini F, Metzroth T, Mück L A, O’Neill D P, Price D R, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Simmons C, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts J D and the integral packages MOLECULE (Almlöf J and Taylor P R), PROPS (Taylor P R), ABACUS (Helgaker T, Jensen H J Aa, Jørgensen P and Olsen J), and ECP routines by Mitin A V and van Wüllen C For the current version, see http://www.cfour.de.

  53. Schmidt M W, Baldridge K K, Boatz J A, Elbert S T, Gordon M S, Jensen H, Koseki S, Matsunaga N, Nguyen K A, Su S, Windus T L, Dupuis M and Montgomery J A Jr 1993 General atomic and molecular electronic structure system J. Comput. Chem. 14 1347

  54. Matczak P and Wojtulewski S 2015 Performance of Möller-Plesset second-order perturbation theory and density functional theory in predicting the interaction between stannylenes and aromatic molecules J. Mol. Mod. 21 41

    Google Scholar 

  55. Cybulski S M, Chałasińński G and Moszyński R 1990 On decomposition of second-order Möller-Plesset supermolecular interaction energy and basis set effects J. Chem. Phys. 92 4357

    CAS  ADS  Google Scholar 

  56. Cybulski S M and Lytle M L 2007 The origin of deficiency of the supermolecule second-order Möller-Plesset approach for evaluating interaction energies J. Chem. Phys. 127 141102

    PubMed  ADS  Google Scholar 

  57. Grimme S 2003 Semiempirical hybrid density functional with perturbative second-order correlation J. Chem. Phys. 118 9095

    CAS  ADS  Google Scholar 

  58. Marchetti O and Werner H J 2009 Accurate Calculations of Intermolecular Interaction Energies Using Explicitly Correlated Coupled Cluster Wave Functions and a Dispersion-Weighted MP2 Method J. Phys. Chem. A 113 11580

  59. Pitonàk M, Neogrady P, Cerny J, Grimme and Hobza 2009 Scaled MP3 Non-Covalent Interaction Energies Agree Closely with Accurate CCSD(T) Benchmark Data Chem. Phys. Chem. 10 282

  60. Huang Y, Shao Y and Beran G J O 2013 Organometal Trihalide Perovskite Single Crystals: A Next Wave of Materials for 25% Efficiency Photovoltaics and Applications Beyond? J. Chem. Phys. 138 224112

  61. Goldey M, Dutoic A and Head-Gordon 2013 Attenuated second-order Möller-Plesset perturbation theory: performance within the aug-cc-pVTZ basis Phys. Chem. Chem. Phys. 15 15869

  62. Carlos W E and Cole M W 1980 Interaction between a He atom and a graphite surface Surf. Sci. 91 339

    CAS  ADS  Google Scholar 

  63. Jiménez-Vázquez H A and Cross R J 1996 Equilibrium constants for noble-gas fullerene compounds J. Chem. Phys. 104 5589

    ADS  Google Scholar 

  64. Cole M W, Frankl D R and Goodstein D L 1981 Probing the helium-graphite interaction Rev. Mod. Phys. 53 199

    CAS  ADS  Google Scholar 

  65. Pang L and Brisse F 1993 Endohedral energies and translation of fullerene-noble gas clusters G@C\(_n\) (G = helium, neon, argon, krypton and xenon; n = 60 and 70) J. Phys. Chem. 97 8562

    CAS  Google Scholar 

  66. Amos A T, Palmer T F, Walters A and Burro B L 1990 Atom-atom potential parameters for van der Waals complexes of aromatics and rare-gas atoms Chem. Phys. Lett. 172 503

    CAS  ADS  Google Scholar 

  67. Leclercq F, Damay P, Foukani M, Chieux P, Bellissent-Funel M C, Rassat A and Fabre C 1993 Precise determination of the molecular geometry in fullerene C\(_{60}\) powder: A study of the structure factor by neutron scattering in a large momentum-transfer range Phys. Rev. B 48 2748

    CAS  ADS  Google Scholar 

  68. Dolgonos G A, Kryachko E S and Nikolaienko T Y 2018 On the Problem of He-He Bond in the Endohedral Fullerene He\(_2\)@C\(_{60}\) Ukr. J. Phys. 63 288

    Google Scholar 

  69. Löwdin P O 1988 In: Molecules in Physics, Chemistry, and Biology J Maruani (Ed.) (Dordrecht, Holland: Kluwer Academic Publishers) Vol. II, p. 3

    Google Scholar 

  70. Häser M, Almlöf J and Scuseria G E 1991 The equilibrium geometry of C\(_{60}\) as predicted by second-order (MP2) perturbation theory Chem. Phys. Lett. 181 497

    ADS  Google Scholar 

  71. Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)

    Google Scholar 

  72. Herzberg G 1945 in Molecular Spectra and Molecular Structure: Volume II: Infrared and Raman Spectra of Polyatomic Molecules (Toronto: D. Van Nostrand Company)

Download references

Acknowledgements

RKC gratefully acknowledges the computational facilities provided by Indian Institute of Astrophysics (IIA), Bangalore. We would like to take this opportunity to express our sincere gratitude for the training imparted to us by Professor S. P. Bhattacharyya. It is our great pleasure to contribute this paper to this volume celebrating his 75th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat K Chaudhuri.

Additional information

Dedicated to Prof. S.P. Bhattacharyya on the occasion of his 75th birthday.

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, R.K., Chattopadhyay, S. Geometrical structure and stability of buckminsterfullerene complexes containing mono- and poly-atomic molecules. J Chem Sci 135, 69 (2023). https://doi.org/10.1007/s12039-023-02183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02183-0

Keywords

Navigation