Skip to main content
Log in

High-pressure transitions in bulk mercury: a density functional study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We provide a consistent treatment of the known solid-state phases of mercury to high pressure to determine the phase changes at 0 K by using the local density approximation (LDA). We obtain good agreement with experimental measurements demonstrating that LDA performs well in the repulsive region of the inter-atomic interaction. The known α-, β-, γ-, and δ-phases of mercury differ energetically by no more than 0.04 eV and therefore provide a challenge to future high accuracy calculations using either wavefunction or density functional-based approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pahl E, Schwerdtfeger P (2010) In: Sattler KD (ed) Handbook of nano-physics, vol 2, Chap. 3. Taylor and Francis, London, pp 1–13

  2. Hill KD (1994) Metrologia 31:39

    Article  Google Scholar 

  3. Hensel F, Warren WW Jr (1999) Fluid metals. Princeton University Press, Princeton

    Google Scholar 

  4. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  5. Höltzl T, Nguyen MT, Veszprémi T (2010) Phys Chem Chem Phys 12:556

    Article  Google Scholar 

  6. Wang X, Andrews L, Riedel S, Kaupp M (2007) Angew Chem Int Ed 46:8371

    Article  CAS  Google Scholar 

  7. Zaleski-Ejgierd P, Pyykkö P (2009) J Phys Chem A 113:12380

    Article  CAS  Google Scholar 

  8. Matsubara T (1982) The structure and properties of matter. Springer, Heidelberg

    Google Scholar 

  9. Schwerdtfeger P, Dolg M, Schwarz WHE, Bowmaker GA, Boyd PDW (1989) J Chem Phys 91:1762

    Article  CAS  Google Scholar 

  10. Deng S, Simon A, Köhler J (1998) Angew Chem Int Ed 37:640

    Article  CAS  Google Scholar 

  11. Mattheiss LF , Warren WW Jr (1977) Phys Rev B 16:624

    Article  CAS  Google Scholar 

  12. McKeehan LW, Cioffi PP (1922) Phys Rev 19:444

    Article  CAS  Google Scholar 

  13. Hanfland M, Syassen K, Christensen NE, Novikov DL (2000) Nature 408:174

    Article  CAS  Google Scholar 

  14. Donohue J (1974) The structures of the elements. Wiley, New York

    Google Scholar 

  15. Singh PP (1994) Phys Rev Lett 72:2446

    Article  CAS  Google Scholar 

  16. Singh PP (1994) Phys Rev B 49:4954

    Article  CAS  Google Scholar 

  17. Paulus B, Rosciszewski K (2004) Chem Phys Lett 394:96

    Article  CAS  Google Scholar 

  18. Gaston N, Paulus B, Rosciszewski K, Schwerdtfeger P, Stoll H (2006) Phys Rev B 74:094102

    Article  Google Scholar 

  19. Gaston N, Schwerdtfeger P (2006) Phys Rev B 74:024105

    Article  Google Scholar 

  20. Takemura K, Fujihisa H, Nakamoto Y, Nakano S, Ohishi Y (2007) J Phys Soc Jpn 76:023601

    Article  Google Scholar 

  21. Schulte O, Holzapfel WB (1993) Phys Rev B 48:14009

    Article  CAS  Google Scholar 

  22. Schulte O, Holzapfel WB (1996) Phys Rev B 53:569

    Article  CAS  Google Scholar 

  23. Moriarty JA (1988) Phys Lett A 131:41

    Article  CAS  Google Scholar 

  24. Jona F, Marcus PM (2007) J Phys Condens Matter 19:036103

    Article  Google Scholar 

  25. Schwerdtfeger P, Gaston N, Krawczyk RP, Tonner R, Moyano GE (2006) Phys Rev B 73:0641121-19

    Article  Google Scholar 

  26. Hermann A, Krawczyk RP, Lein M, Schwerdtfeger P, Hamilton IP, Stewart JJP (2007) Phys Rev A 76:013202

    Article  Google Scholar 

  27. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Comp Math Sci 6:15

    Article  CAS  Google Scholar 

  29. Hafner J (2008) J Comput Chem 29:2044

    Article  CAS  Google Scholar 

  30. Moyano GE, Wesendrup R, Söhnel T, Schwerdtfeger P (2002) Phys Rev Lett 89:103401

    Article  Google Scholar 

  31. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  32. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids 91. Akademie Verlag, Berlin, pp 11–20

  33. Perdew JP, Burke K, Ernzerhof E (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  34. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Phys Rev Lett 100:136406

    Article  Google Scholar 

  35. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748

    Article  CAS  Google Scholar 

  36. Grimme S (2006) J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  37. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  38. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  39. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Àngyán JG (2006) J Chem Phys 124:154709

    Article  CAS  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  41. Murnaghan FD (1944) Proc Nat Acad Sci (USA) 50:697

    Google Scholar 

  42. Barrett CS (1957) Acta Cryst 10:58

    Article  CAS  Google Scholar 

  43. Paulus B (2006) Phys Rep 428:1

    Article  CAS  Google Scholar 

  44. Harl J, Kresse G (2008) Phys Rev B 77:045136

    Article  Google Scholar 

  45. Harl J, Kresse G (2009) Phys Rev Lett 103:056401

    Article  Google Scholar 

  46. Janesko G, Henderson TM, Scuseria GE (2009) J Chem Phys 130:081105

    Article  Google Scholar 

  47. Lide DR (ed) (1997) Handbook of chemistry and physics, 78th edn. CRC Press, London

  48. Huntingdon HB (1958) Solid State Phys 7:282

    Google Scholar 

  49. Weaire D (1968) Philos Mag 18:213

    Article  CAS  Google Scholar 

  50. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  51. Klement W Jr, Jayaraman A, Kennedy GC (1963) Phys Rev 131:1

    Article  CAS  Google Scholar 

  52. Pahl E, Figgen D, Borschevsky A, Peterson KA, Schwerdtfeger P (2011) Theoret Chem Acc 129:651

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Royal Society of New Zealand in terms of the Marsden grant (MAU0703). PS is indebted to the Alexander von Humboldt Foundation (Bonn) for financial support during the stay in Marburg. Finally, we thank Prof. Friedrich Hensel (Marburg) and Dr. C. Thierfelder (Paderborn) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schwerdtfeger.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biering, S., Schwerdtfeger, P. High-pressure transitions in bulk mercury: a density functional study. Theor Chem Acc 130, 455–462 (2011). https://doi.org/10.1007/s00214-011-1023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1023-8

Keywords

Navigation