Skip to main content
Log in

A computational study on the relationship between formation and electrolytic dissociation of carbonic acid

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Calculations at the B3LYP/6-311+G**, MPW1K/6-311+G**, and MP2/6-311+G** level theory were carried out for the CO2 + nH2O → H2CO3 + (n − 1)H2O chemical reaction, where n denotes the number of water molecules. For n = 1, 2, 3, and 4 water molecules, a concerted path (without intermediates) for the formation of H2CO3 was obtained. For n = 6(3 + 3) and n = 8(4 + 4) water molecules, the MPW1K and B3LYP/6-311+G** SCRF = PCM methods resulted in an ion-pair intermediate being formed. Here, +3 or +4 stands for the three or four catalytic water molecules. The catalytic water molecules are distinguished from the reaction participating ones (either three or four). For n = 3 + 5 and n = 3 + 10, two ion-pair intermediates were obtained using both the B3LYP and MPW1K DFT methods. In order to check the method and model dependence, furthermore, n = 3 + 17 and n = 3 + 27 reacting systems were examined. Here, a likely mechanism of formation and electrolytic dissociation of carbonic acid was found. First, the O2C–OH2 complex is formed. Second, it is isomerized to the Zundel cation H5O2 +. Third, the cation is converted to the carbonic acid. The isomerization, i.e., proton transfer, was computed to occur along the hydrogen-bonded network of the pentagon shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Fig. 7
Scheme 5

Similar content being viewed by others

References

The reference 39 is included in the journal which is now out of print. Therefore, the original reference is shown at the end of Supporting Information under permission of Oldenbourg Verlag.

  1. Welch MJ, Lipton JF, Seck JA (1969) J Phys Chem 73:3351

    Article  CAS  Google Scholar 

  2. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttal RL (1982) The NBS tables of chemical thermodynamics properties: selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Suppl 2):2–392

    Google Scholar 

  3. Jonsson B, Karlstrom G, Roos B (1976) Chem Phys Lett 41:317

    Article  CAS  Google Scholar 

  4. Jonsson B, Karlstrom G, Wennerstrom H, Forsen S, Roos B, Almlof J (1977) J Am Chem Soc 99:4628

    Article  CAS  Google Scholar 

  5. Nguyen MT, Ha T (1984) J Am Chem Soc 106:599

    Article  CAS  Google Scholar 

  6. Merz KM Jr (1990) J Am Chem Soc 112:7973

    Article  CAS  Google Scholar 

  7. Nguyen MT, Raspoet G, Vanquickenborne LG, Duijnen PTV (1997) J Phys Chem A 101:7379

    Article  CAS  Google Scholar 

  8. Loerting T, Tautermann C, Kroemer RT, Kohl I, Hallbrucker A, Mayer E, Liedl KR (2000) Angew Chem Int Ed 39:891

    Article  Google Scholar 

  9. Tautermann CS, Voegele AF, Loerting T, Kohl I, Hallbrucker A, Mayer E, Liedl KR (2002) Chem Eur J 8:66

    Article  CAS  Google Scholar 

  10. Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008) J Phys Chem A 112:10386

    Article  CAS  Google Scholar 

  11. Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS, Jalkanen KJ (1996) J Phys Chem 100:2025

    Article  CAS  Google Scholar 

  12. Jalkanen KJ, Suhai S (1996) Chem Phys 208:81

    Article  CAS  Google Scholar 

  13. Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587

    Article  CAS  Google Scholar 

  14. Jalkanen KJ, Elstner M, Suhai S (2004) J Mol Struct (Theochem) 675:61

    Google Scholar 

  15. Bohr H, Jalkanen KJ (2005) In: Clark JW, Panoff RM, Li H (eds) Condensed matter theory, vol 20. Nova Science Publishers, Hauppauge, p 375

  16. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Theor Chem Acc 119:191

    Article  CAS  Google Scholar 

  17. Weise CF, Weisshaar JC (2003) J Phys Chem B 107:3265

    Article  CAS  Google Scholar 

  18. Poon CD, Samulski ET, Weise CF, Weisshaar JC (2000) J Am Chem Soc 122:5642

    Article  CAS  Google Scholar 

  19. Mukhopadhyay P, Zuber G, Beratan DN (2008) Biophys J 95:5574

    Article  CAS  Google Scholar 

  20. Tajkhorshid E, Jalkanen KJ, Suhai S (1998) J Phys Chem B 102:5899

    Article  CAS  Google Scholar 

  21. Frimand K, Bohr H, Jalkanen KJ, Suhai S (2000) Chem Phys 255:165

    Article  CAS  Google Scholar 

  22. Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001) Chem Phys 265:125

    Article  CAS  Google Scholar 

  23. Jalkanen KJ, Jurgensen VW, Claussen A, Jensen GM, Rahim A, Wade RC, Nardi F, Jung C, Nieminen RM, Degtyarenko IM, Herrmann F, Knapp-Mohammady M, Niehaus T, Frimand K, Suhai S (2006) Int J Quantum Chem 106:1160

    Article  CAS  Google Scholar 

  24. Degtyarenko IM, Jalkanen KJ, Gurtovenko AA, Nieminen RM (2007) J Phys Chem B 111:4227

    Article  CAS  Google Scholar 

  25. Degtyarenko I, Gurtovenko AA, Jalkanen KJ and Nieminen RM (2008) J Comput Theor Nanosci 5:277–285

    Google Scholar 

  26. Deplazes E, Bronswijk WV, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2008) Theor Chem Acc 119:155

    Article  CAS  Google Scholar 

  27. Losada M, Xu Y (2007) Chem Phys 9:3127

    Article  CAS  Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  31. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  32. Moeller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  33. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  34. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  35. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  36. Cossi M, Barone V, Mennucci B, Tomasi J (1998) J Chem Phys Lett 286:253

    Article  CAS  Google Scholar 

  37. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  39. Wigner E (1932) Z Phys Chem B 19:203

    Google Scholar 

  40. Mueller EM, de Meijere A, Grubmueller H (2002) J Chem Phys 116:897

    Article  Google Scholar 

  41. Gaussian 09, Revision A. 1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  42. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond, recent developments in theory and experiments. Amsterdam, North Holland, p 687

Download references

Acknowledgments

The authors appreciate careful English corrections of one referee for the better presentation of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yamabe.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 11.6 mb)

Supplementary material 2 (PDF 8.69 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamabe, S., Kawagishi, N. A computational study on the relationship between formation and electrolytic dissociation of carbonic acid. Theor Chem Acc 130, 909–918 (2011). https://doi.org/10.1007/s00214-011-0929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0929-5

Keywords

Navigation