Skip to main content
Log in

An unsymmetrical behavior of reactant units in the Kolbe–Schmitt reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Paths of the Kolbe–Schmitt reaction were investigated by the use of RB3LYP/6-311(+)G(d,p) density functional theory calculations. In a monomer model composed of C6H5O, Na+ and CO2 affording sodium salicylate [C6H4(OH)CO2 Na+], a proton-shift step (Z Naturforsch 57a:812, 2002) was found to have an unrealistically large activation energy. In consideration of the phenol volatilization in the Kolbe’s experiment and the need of the linearity of the proton-transfer path, a dimer model was constructed. Again, a mutual proton-transfer step has a large activation energy. Alternatively, in a dimer model, a transfer path where the phenoxide ion in one monomer acts as a proton acceptor was found to have a reasonable energy. Addition of one more sodium ion leads to the significant lowering of activation energies. Thus, in the dimer, two monomers behave differently (A + A → A + B); one is as if it were a catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Fig. 2
Fig. 3
Scheme 7
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 8

Similar content being viewed by others

References

  1. Lindsey AS, Jeskey H (1957) Chem Rev 57:583

    Article  CAS  Google Scholar 

  2. Kolbe H (1860) Ann Chem 113:125

    Article  Google Scholar 

  3. Kolbe H (1874) J Prakt Chem Part 2 10:89

    Article  Google Scholar 

  4. Schmitt R (1885) J Prakt Chem 31:397

    Article  Google Scholar 

  5. Kosugi Y, Takahashi K, Imaoka Y (1999) J Chem Res (S) 114

  6. Kosugi Y, Imaoka Y, Gotoh F, Rahim MA, Matsui Y, Sakanishi K (2003) Org Biomol Chem 1:817

    Article  CAS  Google Scholar 

  7. Kunert H, Dinjus E, Nauck M, Sieler J (1997) Chem Ber/Recueil 130:1461

    Article  CAS  Google Scholar 

  8. Hales JL, Jones JI, Lindsey AS (1954) J Chem Soc 3145

  9. Dewar MJS (1949) The electronic theory of organic chemistry. Oxford University Press, London, pp 168–227

    Google Scholar 

  10. Markovic Z, Engelbrecht JP, Markovic S (2002) Z Naturforsch 57a:812

    Google Scholar 

  11. Marković Z, Marković S, Begović N (2006) J Chem Inf Model 46:1957

    Article  Google Scholar 

  12. Marković Z, Marković S, Manojlović N, Predojević-Simović J (2007) J Chem Inf Model 47:1520

    Article  Google Scholar 

  13. Marković Z, Marković S (2008) J Chem Inf Model 48:1–143

    Article  Google Scholar 

  14. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Chemie, New York

    Google Scholar 

  15. Woodward RB, Hoffmann R (1965) J Am Chem Soc 87:395

    Article  CAS  Google Scholar 

  16. Hirao I, Kito T (1973) Bull Chem Soc Jpn 46:3470

    Article  CAS  Google Scholar 

  17. Yamabe S, Okumoto S, Hayashi T (1996) J Org Chem 61:6218

    Article  CAS  Google Scholar 

  18. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  20. Stephens PJ, Devlin FJ, Chabalowshi CF, Frish MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  21. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  22. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  23. Filatove M, Cremer D (2005) J Chem Phys 123:12410

    Google Scholar 

  24. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2005) J. Chem Theor Comput 1:415

    Article  CAS  Google Scholar 

  28. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  29. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  30. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  31. Gonzalez C, Schlegel HB (1987) J Phys Chem 90:2154

    Google Scholar 

  32. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41

    Article  Google Scholar 

  33. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam, JM, Iyengar, SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG., Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc. Wallingford CT

  34. Stanescu I, Achenie LEK (2006) Chem Eng Sci 61:6199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yamabe.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamabe, S., Yamazaki, S. An unsymmetrical behavior of reactant units in the Kolbe–Schmitt reaction. Theor Chem Acc 130, 891–900 (2011). https://doi.org/10.1007/s00214-010-0803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0803-x

Keywords

Navigation