Skip to main content
Log in

Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Variation of the activation parameters in the Michael-type reactions (AdN reactions) offers an additive mechanistic tool for the studies of these reactions in solution. This approach uses the substituent effects on the aromatic rings to the variation of the activation parameters, ∆X (X = H, S, G) in the above reactions in the frameworks of the Hammett-like equations in order to evaluate the resultant δX reaction constants. The single linear dependences of the internal enthalpy constants δH int on the δG and the Hammett ρ constants show that the substituent effects in the substrates and nucleophiles on the mechanistic features in AdN reactions are governed by the magnitude of δH int when one of the steps of the process is the single rate-determining step.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perlmutter P (1992) Conjugate addition reactions in organic synthesis. Pergamon, Oxford

    Google Scholar 

  2. Rossiter BE, Swingle NM (1992) Chem Rev 92:771

    Article  CAS  Google Scholar 

  3. Csáky AG, de la Herrán G, Murcia MC (2010) Chem Soc Rev 39:4080

    Article  Google Scholar 

  4. Evans DA, Mito S, Seidel D (2007) J Am Chem Soc 129:11583

    Article  CAS  Google Scholar 

  5. Rabalakos C, Wulff WD (2008) J Am Chem Soc 130:13524

    Article  CAS  Google Scholar 

  6. Gao P, Wang C, Wu Y, Zhou Z, Tang C (2008) Eur J Org Chem 2008:4563. doi:10.1002/ejoc.200800555

    Article  Google Scholar 

  7. Dong XQ, Teng HL, Wang CJ (2009) Org Lett 11:1265

    Article  CAS  Google Scholar 

  8. Tan B, Zhang X, Chua PJ, Zhong G (2009) Chem Commun 779. doi:10.1039/b813915f

  9. Peng L, Xu XY, Wang LL, Huang J, Bai JF, Huang QC, Wang LX (2010) Eur J Org Chem 2010:1849. doi:10.1002/ejoc.200901509

    Article  Google Scholar 

  10. Yu H, Liu M, Han S (2014) Tetrahedron 70:8380

    Article  CAS  Google Scholar 

  11. Ma CH, Kang TR, Liu QZ (2014) Eur J Org Chem 2014:3981. doi:10.1002/ejoc.201402243

    Article  CAS  Google Scholar 

  12. Fang X, Dong XQ, Wang CJ (2014) Tetrahedron Lett 55:5660

    Article  CAS  Google Scholar 

  13. Kwiatkowski J, Lu Y (2014) Chem Commun 50:9313

    Article  CAS  Google Scholar 

  14. Kamal A, Sathish M, Srinivasulu V, Chetna J, Shekar KC, Nekkanti S, Tangella Y, Shankaraiah N (2014) Org Biomol Chem 12:8008

    Article  CAS  Google Scholar 

  15. Du H, Rodriguez J, Bugaut X, Constantieux T (2014) Chem Eur J 20:8458

    Article  CAS  Google Scholar 

  16. Kawazoe S, Yoshida K, Shimazaki Y, Oriyama T (2015) Tetrahedron Lett 56:410

    Article  CAS  Google Scholar 

  17. Işik M, Unver MY, Tanyeli C (2015) J Org Chem 80:828

    Article  Google Scholar 

  18. Bernasconi CF (1989) Tetrahedron 45:4017

    Article  CAS  Google Scholar 

  19. Bernasconi CF, Schuck DF (1992) J Org Chem 57:2365

    Article  CAS  Google Scholar 

  20. Bernasconi CF, Pérez-Lorenzo M, Codding SJ (2007) J Org Chem 72:9456

    Article  CAS  Google Scholar 

  21. Kim SI, Baek HW, Um IH (2009) Bull Korean Chem Soc 30:2909

    Article  CAS  Google Scholar 

  22. Kim SI, Hwang SJ, Park YM, Um IH (2010) Bull Korean Chem Soc 31:1199

    Article  CAS  Google Scholar 

  23. Lee I (1995) Chem Soc Rev 24:223

    Article  CAS  Google Scholar 

  24. Leffler JE, Grunwald E (1963) Rates and equilibria of organic reactions. Wiley, New York

    Google Scholar 

  25. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  26. Ammal SC, Mishima M, Yamataka H (2003) J Org Chem 68:7772

    Article  CAS  Google Scholar 

  27. Itoh S, Yamataka H (2011) Chem Eur J 17:1230

    Article  CAS  Google Scholar 

  28. Um IH, Kang JS, Park JY (2013) J Org Chem 78:5604

    Article  CAS  Google Scholar 

  29. Oh HK, Lee JM, Sung DD, Lee I (2005) J Org Chem 70:3089

    Article  CAS  Google Scholar 

  30. Vlasov VM (2010) New J Chem 34:1408

    Article  CAS  Google Scholar 

  31. Vlasov VM (2012) J Phys Org Chem 25:296

    Article  CAS  Google Scholar 

  32. Hepler LG (1963) J Am Chem Soc 85:3089

    Article  CAS  Google Scholar 

  33. Hepler LG (1971) Can J Chem 49:2803

    Article  CAS  Google Scholar 

  34. Ruff F (2004) Internet Electron J Des 3:474

    CAS  Google Scholar 

  35. Fábián A, Ruff F, Farkas Ö (2008) J Phys Org Chem 21:988

    Article  Google Scholar 

  36. Exner O (1973) Prog Phys Org Chem 10:411

    CAS  Google Scholar 

  37. Liu L, Guo QX (2001) Chem Rev 101:673

    Article  CAS  Google Scholar 

  38. Oh HK, Yang JH, Sung DD, Lee I (2000) J Chem Soc Perkin Trans 2: 101

  39. Oh HK, Kim TS, Lee HW, Lee I (2002) J Chem Soc Perkin Trans 2: 282

  40. Oh HK, Kim IK, Sung DD, Lee I (2005) Bull Korean Chem Soc 26:641

    Article  CAS  Google Scholar 

  41. Sung DD, Kang SS, Lee JP, Jung DI, Ryu ZH, Lee I (2007) Bull Korean Chem Soc 28:1670

    Article  CAS  Google Scholar 

  42. Oh HK, Kim IK, Lee HW, Lee I (2004) J Org Chem 69:3806

    Article  CAS  Google Scholar 

  43. Oh HK, Kim IK, Sung DD, Lee I (2004) Org Biomol Chem 2:1213

    Article  CAS  Google Scholar 

  44. Oh HK, Ku MH (2006) Bull Korean Chem Soc 27:1873

    Article  CAS  Google Scholar 

  45. Oh HK, Yang JH, Hwang YH, Lee HW, Lee I (2002) Bull Korean Chem Soc 23:221

    Article  CAS  Google Scholar 

  46. Oh HK (2009) Bull Korean Chem Soc 30:1887

    Article  CAS  Google Scholar 

  47. Oh HK, Lee JM (2002) Bull Korean Chem Soc 23:1459

    Article  CAS  Google Scholar 

  48. Oh HK (2008) Bull Korean Chem Soc 29:1195

    Article  CAS  Google Scholar 

  49. Oh HK, Yang JH, Lee HW, Lee I (2000) J Org Chem 65:2188

    Article  CAS  Google Scholar 

  50. Hwang J, Yang K, Koo IS, Sung DD, Lee I (2006) Bull Korean Chem Soc 27:733

    Article  CAS  Google Scholar 

  51. Oh HK, Ku MH, Lee HW (2005) Bull Korean Chem Soc 26:935

    Article  CAS  Google Scholar 

  52. Ku MH, Oh HK, Ko S (2007) Bull Korean Chem Soc 28:1217

    Article  CAS  Google Scholar 

  53. Oh HK, Yang JH, Lee HW, Lee I (2000) J Org Chem 65:5391

    Article  CAS  Google Scholar 

  54. Oh HK, Kim TS, Lee HW, Lee I (2003) Bull Korean Chem Soc 24:193

    Article  CAS  Google Scholar 

  55. Pisareva VS, Korzhova NV, Kazhantseva VM, Korshunov SP (1975) Russ J Org Chem 11:1034

    CAS  Google Scholar 

  56. Zenz I, Mayr H (2011) J Org Chem 76:9370

    Article  CAS  Google Scholar 

  57. Sarathi PA, Gnanasekaran C, Schunmugasundaram A (2008) Bull Korean Chem Soc 29:790

    Article  CAS  Google Scholar 

  58. Kaumanns O, Lucius R, Mayr H (2008) Chem Eur J 14:9675

    Article  CAS  Google Scholar 

  59. Um IH, Lee EJ, Seok JA, Kim KH (2005) J Org Chem 70:7530

    Article  CAS  Google Scholar 

  60. Um IH, Hwang SJ, Lee EJ (2008) Bull Korean Chem Soc 29:767

    Article  CAS  Google Scholar 

  61. Varghese B, Kothari S, Banerji KK (1999) Int J Chem Kinet 31:245

    Article  CAS  Google Scholar 

  62. Korzhova NV, Pisareva VS, Korshunov SP (1975) Russ J Org Chem 11:1030

    CAS  Google Scholar 

  63. Tselinskii IV, Kolesetskaya GI (1971) Org React (Tartu) 8:79

    CAS  Google Scholar 

  64. Lakhdar S, Goumont R, Berionni G, Boubaker T, Kurbatov S, Terrier F (2007) Chem Eur J 13:8317

    Article  CAS  Google Scholar 

  65. Um IH, Yuk SM, Yoon SI (2000) Bull Korean Chem Soc 21:553

    CAS  Google Scholar 

  66. Um IH, Lee EJ, Min JS (2001) Tetrahedron 57:9585

    Article  CAS  Google Scholar 

  67. Dhahri N, Boubaker T, Goumont R (2013) Int J Chem Kinet 45:763

    Article  CAS  Google Scholar 

  68. Varghese B, Kothari S, Banerji KK (1998) J Chem Res (M) 1853

  69. Korzhova NV, Korshunov SP, Statsyuk VE, Bodrikov IV (1982) Izv Vysh Uchebn Zaved. Khim Khim Tekhnol (Russ) 25:813

    CAS  Google Scholar 

  70. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito

    Google Scholar 

  71. Lee I, Lee HW (1999) Collect Czech Chem Commun 64:1529

    Article  CAS  Google Scholar 

  72. Lee I (1990) Chem Soc Rev 19:317

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav M. Vlasov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.M. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution. Monatsh Chem 147, 319–328 (2016). https://doi.org/10.1007/s00706-015-1622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1622-5

Keywords

Navigation