Skip to main content
Log in

Relativistic effects on the Fukui function

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The extent of relativistic effects on the Fukui function, which describes local reactivity trends within conceptual density functional theory (DFT), and frontier orbital densities has been analysed on the basis of three benchmark molecules containing the heavy elements: Au, Pb, and Bi. Various approximate relativistic approaches have been tested and compared with the four-component fully relativistic reference. Scalar relativistic effects, as described by the scalar zeroth-order regular approximation methodology and effective core potential calculations, already provide a large part of the relativistic corrections. Inclusion of spin–orbit coupling effects improves the results, especially for the heavy p-block compounds. We thus expect that future conceptual DFT-based reactivity studies on heavy-element molecules can rely on one of the approximate relativistic methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Chermette H (1999) J Comp Chem 20:129–154

    Article  CAS  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  4. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  5. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  6. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

    Article  CAS  Google Scholar 

  7. Hinze J, Jaffé HH (1962) J Am Chem Soc 84:540–546

    Article  CAS  Google Scholar 

  8. Hinze J, Jaffé HH (1963) Can J Chem 41:1315–1328

    Article  CAS  Google Scholar 

  9. Hinze J, Jaffé HH (1963) J Phys Chem 67:1501–1506

    Article  CAS  Google Scholar 

  10. Hinze J, Whitehead MA, Jaffé HH (1963) J Am Chem Soc 85:148–154

    Article  CAS  Google Scholar 

  11. Bergmann D, Hinze J (1987) Struct Bonding 66:145–190

    Article  CAS  Google Scholar 

  12. Bergmann D, Hinze J (1996) Angew Chem Int Ed 35:781–781

    Article  CAS  Google Scholar 

  13. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  14. Pearson RG (1966) Science 151:172–177

    Article  CAS  Google Scholar 

  15. Pearson RG (1997) Chemical hardness. Wiley, New-York

    Book  Google Scholar 

  16. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  17. Fukui K (1982) Science 218:747–754

    Article  CAS  Google Scholar 

  18. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  19. Ayers PW, Levy M (2000) Theor Chem Acc 103:353–360

    CAS  Google Scholar 

  20. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  21. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  22. Elschenbroich C (2006) Organometallics. Wiley, Weinheim

    Google Scholar 

  23. Giju KT, De Proft F, Geerlings P (2005) J Phys Chem A 109:2925–2936

    Article  CAS  Google Scholar 

  24. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  25. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Article  Google Scholar 

  26. Rajagopal AK, Callaway J (1973) Phys Rev B 7:1912–1919

    Article  CAS  Google Scholar 

  27. Saue T, Helgaker T (2002) J Comput Chem 23:814–823

    Article  CAS  Google Scholar 

  28. Engel E, Dreizler RM (1996) Top Curr Chem 181:1–80

    Article  CAS  Google Scholar 

  29. Reiher M, Hinze J (2003) In: Hess BA (ed) Relativistic effects in heavy-element chemistry and physics. Wiley, Weinheim

  30. Reiher M, Wolf A (2009) Relativistic quantum chemistry. Wiley, Weinheim

    Book  Google Scholar 

  31. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29–36

    Article  Google Scholar 

  32. Douglas M, Kroll NM (1974) Ann Phys 82:89–155

    Article  CAS  Google Scholar 

  33. Hess BA (1986) Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  34. Reiher M (2006) Theor Chem Acc 116:241–252

    Article  CAS  Google Scholar 

  35. Chang C, Pelissier M, Durand P (1986) Phys Scr 34:394–404

    Article  CAS  Google Scholar 

  36. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610

    Article  Google Scholar 

  37. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783–9792

    Article  Google Scholar 

  38. Dolg M (2000) In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Jülich

    Google Scholar 

  39. Dolg M (2002) In: Schwerdtfeger P (ed) Relativistic quantum chemistry—part 1 fundamentals. Elsevier, Amsterdam

    Google Scholar 

  40. Michalak A, De Proft F, Geerlings P, Nalewajski RF (1999) J Phys Chem A 103:762–771

    Article  CAS  Google Scholar 

  41. Ayers PW, De Proft F, Borgoo A, Geerlings P (2007) J Chem Phys 126:224107

    Article  Google Scholar 

  42. Sablon N, De Proft F, Geerlings P (2009) J Chem Theory Comput 5:1245–1253

    Article  CAS  Google Scholar 

  43. Flores-Moreno R, Melin J, Ortiz JV, Merino G (2008) J Chem Phys 129:224105

    Article  Google Scholar 

  44. Ayers PW, Melin J (2007) Theor Chem Acc 117:371–381

    Article  CAS  Google Scholar 

  45. Eickerling G, Mastalerz R, Herz V, Scherer W, Himmel HJ, Reiher M (2007) J Chem Theory Comput 3:2182–2197

    Article  CAS  Google Scholar 

  46. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  47. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  48. ADF2006.01, SCM, Theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands

  49. Jensen HJ, Saue T, Visscher L with contributions from Bakken V, Eliav E, Enevoldsen T, Fleig T, Fossgaard O, Helgaker T, Laerdahl J, Larsen CV, Norman P, Olsen J, Pernpointner M, Pedersen JK, Ruud K, Salek P, van Stralen JNP, Thyssen J, Visser O, Winther T (2004) Dirac, a relativistic ab initio electronic structure program, Release DIRAC04.0

  50. Dyall KG (2004) Theor Chem Acc 112:403–409

    Article  CAS  Google Scholar 

  51. Dyall KG (2002) Theor Chem Acc 108:335–340

    CAS  Google Scholar 

  52. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  53. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Kno JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2005) Gaussian 03, Revision D.01. Gaussian, Inc, Wallingford

    Google Scholar 

  54. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569

    Article  CAS  Google Scholar 

  55. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244

    Article  CAS  Google Scholar 

  56. Tozer DJ, De Proft F (2007) J Chem Phys 127:7

    Article  Google Scholar 

  57. Sablon N, De Proft F, Geerlings P, Tozer DJ (2007) Phys Chem Chem Phys 9:5880–5884

    Article  CAS  Google Scholar 

  58. Tozer DJ, De Proft F (2005) J Phys Chem A 109:8923–8929

    Article  CAS  Google Scholar 

  59. Kohout M, Savin A, Preuss H (1991) J Chem Phys 95:1928–1942

    Article  CAS  Google Scholar 

  60. Hebben N, Himmel HJ, Eickerling G, Herrmann C, Reiher M, Herz V, Presnitz M, Scherer W (2007) Chem Eur J 13:10078–10087

    Article  CAS  Google Scholar 

  61. Eickerling G, Reiher M (2008) J Chem Theory Comput 4:286–296

    Article  CAS  Google Scholar 

  62. Purvis GD III (1991) Comput Aided Mol Des 5:55–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.S. acknowledges the Research Foundation, Flanders (FWO) for a position as research assistant and a research stay at M. Reiher’s group at the ETH Zurich. F.D.P. and P.G. thank the Vrije Universiteit Brussel (VUB) and FWO for continuous support to their research group. R.M. and M.R. gratefully acknowledge financial support by the Swiss National Science Foundation SNF (project 200020-121870).

Note added in Proof

After having revised this paper we got aware of a recent paper that investigates relativistic effects on the Fukui function of gold clusters: De HS, Krishnamurty S, Pal S (2009) J Phys Chem C 113:7101–7106.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nick Sablon or Markus Reiher.

Additional information

Dedicated to the memory of Professor Jürgen Hinze and published as part of the Hinze Memorial Issue.

N. Sablon: Aspirant of the Research Foundation-Flanders (aspirant van het Fonds Wetenschappelijk Onderzoek-Vlaanderen).

N. Sablon, F. De Proft, and P. Geerlings are members of the QCMM Ghent-Brussels Alliance Group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sablon, N., Mastalerz, R., De Proft, F. et al. Relativistic effects on the Fukui function. Theor Chem Acc 127, 195–202 (2010). https://doi.org/10.1007/s00214-009-0722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0722-x

Keywords

Navigation