Skip to main content
Log in

Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The extended Koopmans’ theorem is related to Fukui function, which measures the change in electron density that accompanies electron attachment and removal. Two approaches are used, one based on the extended Koopmans’ theorem differential equation and the other based directly on the expression of the ionized wave function from the extended Koopmans’ theorem. It is observed that the Fukui function for electron removal can be modeled as the square of the first Dyson orbital, plus corrections. The possibility of useful generalizations to the extended Koopmans’ theorem is considered; some of these extensions give approximations, or even exact expressions, for the Fukui function for electron attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford UP, New York

    Google Scholar 

  2. Geerlings P, De Proft F, Langenaeker W (2003). Chem Rev 103:1793

    CAS  Google Scholar 

  3. Ayers PW, Anderson JSM, Bartolotti LJ (2005). Int J Quantum Chem 101:520

    Article  CAS  Google Scholar 

  4. Bartolotti LJ, Ayers PW (2005). J Phys Chem A 109:1146

    Article  CAS  Google Scholar 

  5. Flurchick K, Bartolotti L (1995). J Mol Graph 13:10

    Article  CAS  Google Scholar 

  6. Langenaeker W, Demel K, Geerlings P (1991). Theochem 80:329

    Article  CAS  Google Scholar 

  7. Gritsenko OV, Ensing B, Schipper PRT, Baerends EJ (2000). J Phys Chem A 104:8558

    Article  CAS  Google Scholar 

  8. Zhang Y, Yang W (1998). J Chem Phys 109:2604

    Article  CAS  Google Scholar 

  9. Parr RG, Donnelly RA, Levy M, Palke WE (1978). J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  10. Parr RG, Pearson RG (1983). J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  11. Perdew JP, Parr RG, Levy M, Balduz JL Jr. (1982). Phys Rev Lett 49:1691

    Article  CAS  Google Scholar 

  12. Zhang Y, Yang W (2000). Theor Chem Acc 103:346

    CAS  Google Scholar 

  13. Yang W, Zhang Y, Ayers PW (2000). Phys Rev Lett 84:5172

    Article  CAS  Google Scholar 

  14. Gyftopoulos EP, Hatsopoulos GN (1965). Proc Natl Acad Sci USA 60:786

    Article  Google Scholar 

  15. Chan GKL (1999). J Chem Phys 110:4710

    Article  CAS  Google Scholar 

  16. Parr RG, Von Szentpaly L, Liu SB (1999). J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  17. Ayers PW, Anderson JSM, Rodriguez JI, Jawed Z (2005). Phys Chem Chem Phys 7:1918

    Article  CAS  Google Scholar 

  18. Politzer P, Truhlar D (1981). Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  19. Ayers PW, Parr RG (2001). J Am Chem Soc 123:2007

    Article  CAS  Google Scholar 

  20. Yang W, Parr RG, Pucci R (1984). J Chem Phys 81:2862

    Article  CAS  Google Scholar 

  21. Parr RG, Yang W (1984). J Am Chem Soc 106:4049

    Article  CAS  Google Scholar 

  22. Ayers PW, Levy M (2000). Theor Chem Acc 103:353

    CAS  Google Scholar 

  23. Ghanty TK, Ghosh SK (1994). J Am Chem Soc 116:3943

    Article  CAS  Google Scholar 

  24. Galvan M, Vela A, Gazquez JL (1988). J Phys Chemi 92:6470

    Article  CAS  Google Scholar 

  25. Melin J, Aparicio F, Galvan M, Fuentealba P, Contreras R (2003). J Phys Chem A 107:3831

    Article  CAS  Google Scholar 

  26. Chamorro E, De Proft F, Geerlings P (2005). J Chem Phys 123:154104

    Article  CAS  Google Scholar 

  27. Chamorro E, De Proft F, Geerlings P (2005). J Chem Phys 123:084104

    Article  CAS  Google Scholar 

  28. Vargas R, Cedillo A, Garza J, Galvan M (2002) In: Sen KD, (ed) Reviews in modern quantum chemistry: a celebration of the contributions of Robert G. Parr. World Scientific, River Edge

  29. Garza J, Vargas R, Cedillo A, Galvan M, Chattaraj PK (2006). Theor Chem Acc 115:257-265

    Article  CAS  Google Scholar 

  30. Melin J, Ayers PW, Ortiz JV (2005). J Chem Sci 117:387

    CAS  Google Scholar 

  31. Day OW, Smith DW, Morrison RC (1975). J Chem Phys 62:115

    Article  CAS  Google Scholar 

  32. Smith DW, Day OW (1975). J Chem Phys 62:113

    Article  CAS  Google Scholar 

  33. Morrell MM, Parr RG, Levy M (1975). J Chem Phys 62:549

    Article  CAS  Google Scholar 

  34. Ellenbogen JC, Day OW, Smith DW, Morrison RC (1977). J Chem Phys 66:4795

    Article  CAS  Google Scholar 

  35. Matos JMO, Day OW (1987). Int J Quantum Chem 31:871

    Article  CAS  Google Scholar 

  36. Katriel J, Davidson ER (1980). Proc Natl Acad Sci USA 77:4403

    Article  CAS  Google Scholar 

  37. Morrison RC, Liu GH (1992). J Comp Chem 13:1004

    Article  CAS  Google Scholar 

  38. Cioslowski J, Piskorz P, Liu GH (1997). J Chem Phys 107:6804

    Article  CAS  Google Scholar 

  39. Morrison RC (1992). J Chem Phys 96:3718

    Article  CAS  Google Scholar 

  40. Morrison RC (1993). J Chem Phys 99:6221

    Article  CAS  Google Scholar 

  41. Pernal K, Cioslowski J (2001). J Chem Phys 114:4359

    Article  CAS  Google Scholar 

  42. Levy M, Parr RG (1976). J Chem Phys 64:2707

    Article  CAS  Google Scholar 

  43. Levy M, Perdew JP, Sahni V (1984). Phys Rev A 30:2745

    Article  Google Scholar 

  44. Olsen J, Sundholm D (1998). Chem Phys Lett 288:282

    Article  CAS  Google Scholar 

  45. Morrison RC, Ayers PW (1995). J Chem Phys 103:6556

    Article  CAS  Google Scholar 

  46. Morrison RC (1994). Int J Quantum Chem 49:649

    Article  CAS  Google Scholar 

  47. Kubo R (1962). J Phys Soc Japan 17:1100

    Article  Google Scholar 

  48. Ayers PW, Morrison RC, Roy RK (2002). J Chem Phys 116:8731

    Article  CAS  Google Scholar 

  49. McWeeny R (1989). Methods of molecular quantum mechanics. Academic, London

    Google Scholar 

  50. Ortiz JV (1999). Advances in quantum chemistry 35:33

    Article  CAS  Google Scholar 

  51. Nichols JA, Yeager DL, Jorgensen P (1984). J Chem Phys 80:293

    Article  CAS  Google Scholar 

  52. Golab JT, Yeager DL (1987). J Chem Phys 87:2925

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Ayers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayers, P.W., Melin, J. Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans’ theorem. Theor Chem Acc 117, 371–381 (2007). https://doi.org/10.1007/s00214-006-0165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0165-6

Keywords

Navigation