Skip to main content
Log in

Radiationless decay of excited states of tetrahydrocannabinol through the S 1S 0 (conical) intersection

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ground and electronically excited singlet states of tetrahydrocannabinol have been studied theoretically using density functional and time-dependent density functional methods. The vertical excitation energies, the equilibrium geometries as well as the adiabatic excitation energies have been determined. Opening of the six-membered ring between the oxygen and carbon atoms has been considered as photochemical reaction path. This mechanism leads to a typical excited-state intramolecular hydrogen-transfer process and produces low-lying S 0S 1 intersection (possible conical intersection, CI) which provides a channel for effective radiationless deactivation of the electronically excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Conical intersections (CIs), geometries where two electronic states are truly degenerate, providing a very efficient channel for nonradiative relaxation processes to the ground state on an ultrafast time scale with the extra energy being transformed into heat.

References

  1. Gaoni Y, Mechoulam R (1964) J Am Chem Soc 86:1646

    Article  CAS  Google Scholar 

  2. Mechoulam R, Gaoni Y (1967) Fortschr Chem Org Naturst 25:175

    CAS  Google Scholar 

  3. Agurell S, Dewey WL, Willette RE (1984) The cannabinoids: chemical, pharmacologic and therapeutic aspects. Academic Press, New York

    Google Scholar 

  4. Guzman M (2003) Nat Rev Cancer 3:745

    Article  CAS  Google Scholar 

  5. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H (2008) Cancer Res 868:339

    Article  Google Scholar 

  6. Czifra G, Varga A, Nyeste K, Marincsák R, Tóth BI, Kovács I, Kovács L, Bíró T (2009) J Cancer Res Clin Oncol 135:507

    Article  CAS  Google Scholar 

  7. Burns TL, Ineck JR (2006) Ann Pharmacother 40:251

    Article  CAS  Google Scholar 

  8. Honório KM, Freitas LG, Trsic M, da Silva ABF (2001) J Mol Struct (Theochem) 538:99

    Article  Google Scholar 

  9. Brogan AP, Eubanks LM, Koob GF, Dickerson TJ, Janda KD (2007) J Am Chem Soc 129:3698

    Article  CAS  Google Scholar 

  10. Honório KM, da Silva ABF (2005) J Mol Model 11:200

    Article  Google Scholar 

  11. Bodor NS, Huang MJ (1997) Int J Quant Chem 61:127

    Article  CAS  Google Scholar 

  12. Huang MJ, Leszczynski J (2001) J Comp Aided Mol Des 15:323

    Article  CAS  Google Scholar 

  13. Silva TB, Pereira MA, Malta VS, Bento ES, San-Miguel MA, Ziolli RL, Martins JBL, Sin A, Taft CA (2008) Int J Quant Chem 108:2530

    Article  CAS  Google Scholar 

  14. Pate DW (1983) Econ Bot 37:396

    CAS  Google Scholar 

  15. Lydon J, Teramura AH (1987) Phytochemistry 26:1216

    Article  CAS  Google Scholar 

  16. Lydon J, Teramura AH, Coffman CB (1987) Photochem Photobiol A 46:201

    Article  CAS  Google Scholar 

  17. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  18. Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127

    Article  CAS  Google Scholar 

  19. Domcke W, Yarkony DR, Köppel H (2004) Conical intersections: electronic structure, dynamics and spectroscopy. World Scientific, Singapore. In particular see: (a) Yarkony DR, p 41; (b) Köppel H, p 175, (c) de Vivie- Riedle R Hofmann A, p 803

  20. Handy NC, Tozer DJ (1999) J Comp Chem 20:106

    Article  CAS  Google Scholar 

  21. Grabo T, Petersilka M, Gross EKU (2000) J Molec Struct (Theochem) 501:353

    Article  Google Scholar 

  22. Guan J, Casida ME, Salahub DR (2000) J Molec Struct (Theochem) 527:229

    Article  CAS  Google Scholar 

  23. Wanko M, Garavelli M, Bernardi F, Niehaus TA, Frauenheim T, Elstner M (2004) J Chem Phys 120:1674

    Article  CAS  Google Scholar 

  24. Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009

    Article  CAS  Google Scholar 

  25. Levine BG, Ko C, Quennewille J, Martinez TJ (2006) Mol Phys 104:1039

    Article  CAS  Google Scholar 

  26. Werner U, Mitric R, Suzuki T, Bonacic-Koutecky V (2008) Chem Phys 349:319

    Article  CAS  Google Scholar 

  27. Sobolewski AL, Domcke W (1999) Phys Chem Chem Phys 1:3065

    Article  CAS  Google Scholar 

  28. Ahlrichs R, Bar M, Haser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165. http://www.cosmologic.de

    Google Scholar 

  29. Schaftenaar G, Noordik JH (2000) J Comput Aid Mol Des 14:123

    Article  CAS  Google Scholar 

  30. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  Google Scholar 

  31. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules, Sect. 4.3. VCH, Weinheim, USA

  33. Sobolewski AL, Domcke W (2007) J Phys Chem A 111:11725

    Article  CAS  Google Scholar 

  34. Sobolewski AL, Domcke W (2008) Chem Phys Lett 457:404

    Article  CAS  Google Scholar 

  35. Formosinho SJ, Arnaut LG (1993) J Photochem Photobiol A 75:21

    Article  CAS  Google Scholar 

  36. Douhal A, Lahmani F, Zewail AH (1996) Chem Phys 207:477

    Article  CAS  Google Scholar 

  37. Sobolewski AL, Domcke W (2007) ChemPhysChem 8:756

    Article  CAS  Google Scholar 

  38. Sobolewski AL, Domcke W (1994) Chem Phys 184:115

    Article  CAS  Google Scholar 

  39. Sobolewski AL, Domcke W (1998) Chem Phys 232:257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.V. acknowledges the OTKA Grant No. 80095 and the computational resources provided by the John-von-Neumann Institute, Research Centre Juelich (Project ID ehu01). The Leibniz Supercomputing Centre in Munich is also thanked for providing computational resources on the Linux Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Vibók.

Additional information

Dedicated to Professor Sandor Suhai on the occasion of his 65th birthday and published as part of the Suhai Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (65.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halász, G.J., Sobolewski, A.L. & Vibók, Á. Radiationless decay of excited states of tetrahydrocannabinol through the S 1S 0 (conical) intersection. Theor Chem Acc 125, 503–509 (2010). https://doi.org/10.1007/s00214-009-0673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0673-2

Keywords

Navigation