Skip to main content
Log in

Catecholaminergic and opioidergic system mediated effects of reboxetine on diabetic neuropathic pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Current data indicate that the noradrenergic system plays a critical role in neuropathic pain treatment. Notably, drugs that directly affect this system may have curative potential in neuropathy-associated pain.

Objectives

The aim of this study was to evaluate the potential therapeutic efficacy of reboxetine, a potent and selective noradrenaline reuptake inhibitor, on hyperalgesia and allodynia responses in rats with experimental diabetes. Furthermore, mechanistic studies were performed to elucidate the possible mode of actions.

Methods

Experimental diabetes was induced by a single dose of streptozotocin. Mechanical hyperalgesia, mechanical allodynia, thermal hyperalgesia, and thermal allodynia responses in diabetic rats were evaluated by Randall–Selitto, dynamic plantar, Hargreaves, and warm plate tests, respectively.

Results

Reboxetine treatment (8 and 16 mg/kg for 2 weeks) demonstrated an effect comparable to that of the reference drug, pregabalin, improving the hyperalgesic and allodynic responses secondary to diabetes mellitus. Pretreatment with phentolamine, metoprolol, SR 59230A, and atropine did not alter the abovementioned effects of reboxetine; however, the administration of α-methyl-para-tyrosine methyl ester, propranolol, ICI-118,551, SCH-23390, sulpiride, and naltrindole significantly inhibited these effects. Moreover, reboxetine did not induce a significant difference in the rat plasma glucose levels.

Conclusions

Our findings indicate that the antihyperalgesic and antiallodynic effects of reboxetine are mediated by the catecholaminergic system; β2-adrenoceptors; D1-, D2/D3-dopaminergic receptors; and δ-opioid receptors. The results suggest that this analgesic effect of reboxetine, besides its neutral profile on glycemic control, may be advantageous in the pharmacotherapy of diabetic neuropathy–induced pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ang L, Jaiswal M, Martin C, Pop-Busui R (2014) Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep 14(9):528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, Nurmikko T, European Federation of Neurological Societies (2010) EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 17(9):1113–1e88

    Article  CAS  PubMed  Google Scholar 

  • Aydın TH, Can ÖD, Demir Özkay Ü, Turan N (2016) Effect of subacute agomelatine treatment on painful diabetic neuropathy: involvement of catecholaminergic mechanisms. Fundam Clin Pharmacol 30(6):549–567

    Article  CAS  PubMed  Google Scholar 

  • Bannister K, Bee LA, Dickenson AH (2009) Preclinical and early clinical investigations related to monoaminergic pain modulation. Neurotherapeutics 6:703–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbaros MB, Can ÖD, Üçel Uİ, Turan Yücel N, Demir Özkay Ü (2018) Antihyperalgesic activity of atomoxetine on diabetes-induced neuropathic pain: contribution of noradrenergic and dopaminergic systems. Molecules 23(8):E2072

    Article  CAS  PubMed  Google Scholar 

  • Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS (2007) Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 8(2):50–62

    Article  Google Scholar 

  • Barrot M, Yalcin I, Choucair-Jaafar N, Benbouzid M, Freund-Mercier MJ (2009) From antidepressant drugs to beta-mimetics: preclinical insights on potential new treatments for neuropathic pain. Recent Pat CNS Drug Discov 4(3):182–189

    Article  CAS  PubMed  Google Scholar 

  • Béïque JC, Blier P, de Montigny C, Debonnel G (2000) Potentiation by (−)Pindolol of the activation of postsynaptic 5-HT(1A) receptors induced by venlafaxine. Neuropsychopharmacology 23(3):294–306

    Article  PubMed  Google Scholar 

  • Benbouzid M, Choucair-Jaafar N, Yalcin I, Waltisperger E, Muller A, Freund-Mercier MJ, Barrot M (2008a) Chronic but not acute, tricyclic antidepressant treatment alleviates neuropathic allodynia after sciatic nerve cuffing in mice. Eur J Pain 12(8):1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Benbouzid M, Gavériaux-Ruff C, Yalcin I, Waltisperger E, Tessier LH, Muller A, Kieffer BL, Freund-Mercier MJ, Barrot M (2008b) Delta-opioid receptors are critical for tricyclic antidepressant treatment of neuropathic allodynia. Biol Psychiatry 63(6):633–636

    Article  CAS  PubMed  Google Scholar 

  • Bohren Y, Karavelic D, Tessier LH, Yalcin I, Gavériaux-Ruff C, Kieffer BL, Freund-Mercier MJ, Barrot M (2010) Mu-opioid receptors are not necessary for nortriptyline treatment of neuropathic allodynia. Eur J Pain 14(7):700–704

    Article  CAS  PubMed  Google Scholar 

  • Bohren Y, Tessier LH, Megat S, Petitjean H, Hugel S, Daniel D, Kremer M, Fournel S, Hein L, Schlichter R, Freund-Mercier MJ, Yalcin I, Barrot M (2013) Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiol Dis 60:39–50

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite R (2015) Reboxetine has no antidepressant effect at all. BMJ 351:h5842

    Article  CAS  PubMed  Google Scholar 

  • Castany S, Carcolé M, Leánez S, Pol O (2016) The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: involvement of heme oxygenase 1. Neurosci Lett 614:49–54

    Article  CAS  PubMed  Google Scholar 

  • Cegielska-Perun K, Bujalska-Zadrożny M, Tatarkiewicz J, Gąsińska E, Makulska-Nowak HE (2013) Venlafaxine and neuropathic pain. Pharmacology 91(1–2):69–76

    Article  CAS  PubMed  Google Scholar 

  • Cegielski-Perun K, Bujalska-Zadrożny M, Gasińska E, Makulska-Nowak HE (2014) Enhancement of antinociceptive effect of morphine by antidepressants in diabetic neuropathic pain model. Pharmacol Rep 66(2):228–234

    Article  CAS  Google Scholar 

  • Ceredig RA, Pierre F, Doridot S, Alduntzin U, Salvat E, Yalcin I, Gaveriaux-Ruff C, Barrot M, Massotte D (2018) Peripheral delta opioid receptors mediate duloxetine antiallodynic effect in a mouse model of neuropathic pain. Eur J Neurosci 48(5):2231–2246

    Article  PubMed  Google Scholar 

  • Chen M, Hoshino H, Saito S, Yang Y, Obata H (2017) Spinal dopaminergic involvement in the antihyperalgesic effect of antidepressants in a rat model of neuropathic pain. Neurosci Lett 649:16–123

    Article  CAS  Google Scholar 

  • Choucair-Jaafar N, Salvat E, Freund-Mercier MJ, Barrot M (2014) The antiallodynic action of nortriptyline and terbutaline is mediated by β(2) adrenoceptors and δ opioid receptors in the ob/ob model of diabetic polyneuropathy. Brain Res 1546:18–26

    Article  CAS  PubMed  Google Scholar 

  • Corrodi H, Hanson LC (1966) Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia 10:116–125

    Article  CAS  PubMed  Google Scholar 

  • Deuschle M (2013) Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr Opin Psychiatry 26(1):60–65

    Article  PubMed  Google Scholar 

  • Di Cesare Mannelli L, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Toscano A, Pacini A, Bartolini A (2009) Neuroprotective effects of acetyl-L-carnitine on neuropathic pain and apoptosis: a role for the nicotinic receptor. J Neurosci Res 87(1):200–207

    Article  CAS  PubMed  Google Scholar 

  • Dierich A, Kieffer BL (2004) Knockout mouse models in pain research. Methods Mol Med 99:269–299

    CAS  PubMed  Google Scholar 

  • Dworkin RH, O’Connor AB, Audette J, Baron R, Gourlay GK, Haanpää ML, Kent JL, Krane EJ, Lebel AA, Levy RM, Mackey SC, Mayer J, Miaskowski C, Raja SN, Rice AS, Schmader KE, Stacey B, Stanos S, Treede RD, Turk DC, Walco GA, Wells CD (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literatüre update. Mayo Clin Proc 85(3 Suppl):3–14

    Article  CAS  Google Scholar 

  • Eyding D, Lelgemann M, Grouven U, Härter M, Kromp M, Kaiser T, Kerekes MF, Gerken M, Wieseler B (2010) Reboxetine for acute treatment of major depression: systematic review and meta-analysis of published and unpublished placebo and selective serotonin reuptake inhibitor controlled trials. BMJ 341:c4737

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpää M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14(2):162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forman LJ (1999) NMDA receptor antagonism produces antinociception which is partially mediated by brain opioids and dopamine. Life Sci 64(21):1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Fulford AJ, Marsden CA (2007) An intact dopaminergic system is required for context-conditioned release of 5-HT in the nucleus accumbens of postweaning isolation-reared rats. Neuroscience 149(2):392–400

    Article  CAS  PubMed  Google Scholar 

  • Gaveriaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36:62–71

    Article  CAS  PubMed  Google Scholar 

  • Hartung JE, Ciszek BP, Nackley AG (2014) β2-and β3-adrenergic receptors drive COMT-dependent pain by increasing production of nitric oxide and cytokines. Pain 155:1346–1355

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Hickey L, Donaldson LF, Lumb BM, Pickering AE (2015) Intrathecal reboxetine suppresses evoked and ongoing neuropathic pain behaviours by restoring spinal noradrenergic inhibitory tone. Pain 156(2):328–334

    Article  CAS  PubMed  Google Scholar 

  • Juárez-Rojop IE, Morales-Hernández PE, Tovilla-Zárate CA, Bermúdez-Ocaña DY, Torres-Lopez JE, Ble-Castillo JL, Díaz-Zagoya JC, Granados-Soto V (2015) Celecoxib reduces hyperalgesia and tactile allodynia in diabetic rats. Pharmacol Rep 67(3):545–552

    Article  CAS  PubMed  Google Scholar 

  • Khanam R, Pillai KK (2005) Lack of hypo/hyperglycemic effects of reboxetine in diabetic and non-diabetic rats. Fundam Clin Pharmacol 19(6):657–659

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Saito S, Obata H (2012) Dexmedetomidine decreases hyperalgesia in neuropathic pain by increasing acetylcholine in the spinal cord. Neurosci Lett 529(1):70–74

    Article  CAS  PubMed  Google Scholar 

  • Krell HV, Leuchter AF, Cook IA, Abrams M (2005) Evaluation of reboxetine, a noradrenergic antidepressant, for the treatment of fibromyalgia and chronic low back pain. Psychosomatics 46(5):379–384

    Article  CAS  PubMed  Google Scholar 

  • Kremer M, Salvat E, Muller A, Yalcin I, Barrot M (2016) Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience 338:183–206

    Article  CAS  PubMed  Google Scholar 

  • Kremer M, Yalcin I, Goumon Y, Wurtz X, Nexon L, Daniel D, Megat S, Ceredig RA, Ernst C, Turecki G, Chavant V, Théroux JF, Lacaud A, Joganah LE, Lelievre V, Massotte D, Lutz PE, Gilsbach R, Salvat E, Barrot M (2018) A dual noradrenergic mechanism for the relief of neuropathic allodynia by the antidepressant drugs duloxetine and amitriptyline. J Neurosci 38(46):9934–9954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Go D, Kim W, Lee G, Bae H, Quan FS, Kim SK (2016) Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain. Korean J Physiol Pharmacol 20(4):407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226

    Article  CAS  PubMed  Google Scholar 

  • Malcangio M, Tomlinson DR (1998) A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 76(1–2):151–157

    Article  CAS  PubMed  Google Scholar 

  • Max MB, Lynch SA, Muir J, Shoaf SE, Smoller B, Dubner R (1992) Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N Engl J Med 326(19):1250–1256

    Article  CAS  PubMed  Google Scholar 

  • McDonnell C, Leánez S, Pol O (2017) The induction of the transcription factor Nrf2 enhances the antinociceptive effects of delta-opioid receptors in diabetic mice. PLoS One 12(7):e0180998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogil JS, Yu L, Basbaum AI (2000) Pain genes?: natural variation and transgenic mutants. Annu Rev Neurosci 23:777–811

    Article  CAS  PubMed  Google Scholar 

  • Niknia S, Kaeidi A, Hajizadeh MR, Mirzaei MR, Khoshdel A, Hajializadeh Z, Fahmidehkar MA, Mahmoodi M (2018) Neuroprotective and antihyperalgesic effects of orexin-a in rats with painful diabetic neuropathy. Neuropeptides (18):30111–30112

  • Njung’e K, Critchley MA, Handley SL (1993) Effects of beta-adrenoceptor ligands in the elevated X-maze ‘anxiety’ model and antagonism of the ‘anxiogenic’ response to 8-OH-DPAT. J Psychopharmacol 7(2):173–180

    Article  PubMed  Google Scholar 

  • Obata H (2017) Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci 18(11):E2483

    Article  CAS  PubMed  Google Scholar 

  • Onal A, Parlar A, Ulker S (2007) Milnacipran attenuates hyperalgesia and potentiates antihyperalgesic effect of tramadol in rats with mononeuropathic pain. Pharmacol Biochem Behav 88:171–178

    Article  CAS  PubMed  Google Scholar 

  • Ong KW, Hsu A, Song L, Huang D, Tan BK (2011) Polyphenols-rich Vernonia amygdalina shows anti-diabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol 133(2):598–607

    Article  PubMed  Google Scholar 

  • Page ME (2003) The promises and pitfalls of reboxetine. CNS Drug Rev 9(4):327–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecikoza U, Micov A, Tomić M, Stepanović-Petrović R (2018) Eslicarbazepine acetate reduces trigeminal nociception: possible role of adrenergic, cholinergic and opioid receptors. Life Sci 214:167–175

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LH, Nielsen AN, Blackburn-Munro G (2005) Anti-nociception is selectively enhanced by parallel inhibition of multiple subtypes of monoamine transporters in rat models of persistent and neuropathic pain. Psychopharmacology 182(4):551–561

    Article  CAS  PubMed  Google Scholar 

  • Pertovaara A (2013) The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 716:2–7

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Boultadakis A, Georgiadou G, Tarantilis PA, Sakellaridis N (2008) Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomed 15(12):1135–1139

  • Pop-Busui R, Lu J, Brooks MM, Albert S, Althouse AD, Escobedo J, Green J, Palumbo P, Perkins BA, Whitehouse F, Jones TL, BARI 2D Study Group (2013) Impact of glycemic control strategies on the progression of diabetic peripheral neuropathy in the bypass angioplasty revascularization investigation 2 diabetes (BARI 2D) cohort. Diabetes Care 36(10):3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preskorn SH (2004) Reboxetine: a norepinephrine selective reuptake pump inhibitor. J Psychiatr Pract 10(1):57–63

    Article  PubMed  Google Scholar 

  • Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A (2018) Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 69(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Saitoh A, Nagase H (2018) Delta opioid receptor (dor) ligands and pharmacology: development of indolo- and quinolinomorphinan derivatives based on the message-address concept. Handb Exp Pharmacol 247:3–19

    Article  CAS  PubMed  Google Scholar 

  • Schreiber S, Frishtick R, Volis I, Rubovitch V, Pick CG, Weizman R (2009) The antinociceptive properties of reboxetine in acute pain. Eur Neuropsychopharmacol 19(10):735–739

    Article  CAS  PubMed  Google Scholar 

  • Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM (2015) Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes 6(3):432–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Schüler P, Seibel K, Chevts V, Schaffler K (2002) Analgesic effect of the selective noradrenaline reuptake inhibitor reboxetine. Nervenarzt 73(2):149–154

    Article  PubMed  Google Scholar 

  • Sepede G, Corbo M, Fiori F, Martinotti G (2012) Reboxetine in clinical practice: a review. Clin Ter 163(4):e255–e262

    CAS  PubMed  Google Scholar 

  • Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: current perspective and future directions. Pharm Res 80:21–35

    Article  CAS  Google Scholar 

  • Taylor BK (2009) Spinal inhibitory neurotransmission in neuropathic pain. Curr Pain Headache Rep 13:208–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor AM, Becker S, Schweinhardt P, Cahill C (2016) Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain 157(6):1194–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiagarajan VR, Shanmugam P, Krishnan UM, Muthuraman A (2014) Ameliorative effect of Vernonia cinerea in vincristine-induced painful neuropathy in rats. Toxicol Ind Health 30(9):794–805

    Article  CAS  PubMed  Google Scholar 

  • Üçel Uİ, Can ÖD, Demir Özkay Ü, Öztürk Y (2015) Antihyperalgesic and antiallodynic effects of mianserin on diabetic neuropathic pain: a study on mechanism of action. Eur J Pharmacol 756:92–106

    Article  CAS  PubMed  Google Scholar 

  • Vinik AI, Casellini CM (2013) Guidelines in the management of diabetic nerve pain: clinical utility of pregabalin. Diabetes Metab Syndr Obes 6:57–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster M (2015) Pharmacologic basis for the use of selective norepinephrine reuptake inhibitors for the treatment of neuropathic pain conditions. Ment Health Clin 5(6):284–288

    Article  Google Scholar 

  • Whiskey E, Taylor D (2013) A review of the adverse effects and safety of noradrenergic antidepressants. J Psychopharmacol 27(8):732–739

    Article  CAS  PubMed  Google Scholar 

  • Widerlov E, Lewander T (1978) Inhibition of the in vivo biosynthesis and changes of catecholamine levels in rat brain after a-methyl-ptyrosine; time-and dose–response relationships. Naunyn Schmiedeberg's Arch Pharmacol 304:111–123

    Article  CAS  Google Scholar 

  • Yalcin I, Tessier LH, Petit-Demoulière N, Doridot S, Hein L, Freund-Mercier MJ, Barrot M (2009a) Beta2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain. Neurobiol Dis 33(3):386–394

    Article  CAS  PubMed  Google Scholar 

  • Yalcin I, Choucair-Jaafar N, Benbouzid M, Tessier LH, Muller A, Hein L, Freund-Mercier MJ, Barrot M (2009b) Beta(2)-adrenoceptors are critical for antidepressant treatment of neuropathic pain. Ann Neurol 65(2):218–225

    Article  CAS  PubMed  Google Scholar 

  • Yalcin I, Tessier LH, Petit-Demoulière N, Waltisperger E, Hein L, Freund-Mercier MJ, Barrot M (2010) Chronic treatment with agonists of beta(2)-adrenergic receptors in neuropathic pain. Exp Neurol 221(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Yarnitsky D (2015) Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain 156:24–31

    Article  Google Scholar 

  • Zhang X, Hartung JE, Bortsov AV, Kim S, O’Buckley SC, Kozlowski J, Nackley AG (2018) Sustained stimulation of β2- and β3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav Immun 73:520–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JX, Xu FY, Xu WJ, Zhao Y, Qu CL, Tang JS, Barry DM, Du JQ, Huo FQ (2013) The role of adrenoceptor in mediating noradrenaline action in the ventrolateralorbital cortex on allodynia following spared nerve injury. Exp Neurol 248:381–386

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhao L, Qu R, Zhu HY, Wang Y, Jiang X, Xu GY (2015) Adrenergic stimulation sensitizes TRPV1 through upregulation of cystathionine β-synthetase in a rat model of visceral hypersensitivity. Sci Rep 5:16109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported from the Anadolu University Scientific Research Projects Commission (Project no: 1606S549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazlı Turan Yücel.

Ethics declarations

The experimental protocol was approved by the Animal Experiments Local Ethics Committee of Anadolu University.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan Yücel, N., Can, Ö.D. & Demir Özkay, Ü. Catecholaminergic and opioidergic system mediated effects of reboxetine on diabetic neuropathic pain. Psychopharmacology 237, 1131–1145 (2020). https://doi.org/10.1007/s00213-019-05443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05443-5

Keywords

Navigation