Skip to main content
Log in

Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The “subjective high” from marijuana ingestion is likely due to Δ9-tetrahydrocannabinol (THC) activating the central cannabinoid receptor type 1 (CB1R) of the endocannabinoid signaling system. THC is a weak partial agonist according to in vitro assays, yet THC mimics the behavioral effects induced by more efficacious cannabinergics. This distinction may be important for understanding similarities and differences in the dose–effect spectra produced by marijuana/THC and designer cannabimimetics (“synthetic marijuana”).

Objective

We evaluated if drug discrimination is able to functionally detect/differentiate between a full, high-efficacy CB1R agonist [(±)AM5983] and the low-efficacy agonist THC in vivo.

Materials and methods

Rats were trained to discriminate between four different doses of AM5983 (0.10 to 0.56 mg/kg), and vehicle and dose generalization curves were determined for both ligands at all four training doses of AM5983. The high-efficacy WIN55,212-2 and the lower-efficacy (R)-(+)-methanandamide were examined at some AM5983 training conditions. Antagonism tests involved rimonabant and WIN55,212-2 and AM5983. The separate (S)- and (R)-isomers of (±)AM5983 were tested at one AM5983 training dose (0.30 mg/kg). The in vitro cyclic adenosine monophosphate (cAMP) assay examined AM5983 and the known CB1R agonist CP55,940.

Results

Dose generalization ed50 values increased as a function of the training dose of AM5983, but more so for the partial agonists. The order of potency was (R)-isomer > (±)AM5983 > (S)-isomer and AM5983 > WIN55,212-2 ≥ THC > (R)-(+)-methanandamide. Surmountable antagonism of AM5983 and WIN55,212-2 occurred with rimonabant. The cAMP assay confirmed the cannabinergic nature of AM5983 and CP55,940.

Conclusions

Drug discrimination using different training doses of a high-efficacy, full CB1R agonist differentiated between low- and high-efficacy CB1R agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abadji V, Lin S, Taha G, Griffin G, Stevenson LA, Pertwee RG, Makriyannis A (1994) (R)-Methanandamide: a chiral novel anandamide possessing higher potency and metabolic stability. J Med Chem 37:1889–1893

    Article  CAS  PubMed  Google Scholar 

  • Adams IB, Compton DR, Martin BR (1998) Assessment of anandamide interaction with the cannabinoid brain receptor: SR 141716A antagonism studies in mice and autoradiographic analysis of receptor binding in rat brain. J Pharmacol Exp Ther 284:1209–1217

    CAS  PubMed  Google Scholar 

  • Alici T, Appel JB (2004) Increasing the selectivity of the discriminative stimulus effects of delta-9-tetrahydrocannabinol: complete substitution with methanandamide. Pharmacol Biochem Behav 79:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bergman J, France CP, Holtzman SG, Katz JL, Koek W, Stephens DN (2000) Agonist efficacy, drug dependence, and medications development: preclinical evaluation of opioid, dopaminergic, and GABAA-ergic ligands. Psychopharmacol (Berl) 153:67–84

    Article  CAS  Google Scholar 

  • Bosier B, Muccioli GG, Hermans E, Lambert DM (2010) Functionally selective cannabinoid receptor signalling: therapeutic implications and opportunities. Biochem Pharmacol 80:1–12

    Article  CAS  PubMed  Google Scholar 

  • Breivogel CS, Childers SR (2000) Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition. J Pharmacol Exp Ther 295:328–336

    CAS  PubMed  Google Scholar 

  • Breivogel CS, Selley DE, Childers SR (1998) Cannabinoid receptor agonist efficacy for stimulating [35 S]GTPgammaS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem 273:16865–16873

    Article  CAS  PubMed  Google Scholar 

  • Burkey RT, Nation JR (1997) (R)-Methanandamide, but not anandamide, substitutes for Δ9-THC in a drug-discrimination procedure. Exp Clin Psychopharmacol 5:195–202

    Article  CAS  PubMed  Google Scholar 

  • Carriero D, Aberman J, Lin SY, Hill A, Makriyannis A, Salamone JD (1998) A detailed characterization of the effects of four cannabinoid agonists on operant lever pressing. Psychopharmacol (Berl) 137:147–156

    Article  CAS  Google Scholar 

  • Childers SR (2006) Activation of G-proteins in brain by endogenous and exogenous cannabinoids. AAPS J 8:E112–E117

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC (1999) Drug discrimination in neurobiology. Pharmacol Biochem Behav 64:337–345

    Article  CAS  PubMed  Google Scholar 

  • Compton DR, Gold LH, Ward SJ, Balster RL, Martin BR (1992) Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from Δ9-tetrahydrocannabinol. J Pharmacol Exp Ther 263:1118–1126

    CAS  PubMed  Google Scholar 

  • De Vry J, Jentzsch KR (2002) Discriminative stimulus effects of BAY 38–7271, a novel cannabinoid receptor agonist. Eur J Pharmacol 457:147–152

    Article  PubMed  Google Scholar 

  • De Vry J, Jentzsch KR (2003) Intrinsic activity estimation of cannabinoid CB1 receptor ligands in a drug discrimination paradigm. Behav Pharmacol 14:471–476

    PubMed  Google Scholar 

  • Extance K, Goudie AJ (1981) Inter-animal olfactory cues in operant drug discrimination procedures in rats. Psychopharmacol (Berl) 73:363–371

    Article  CAS  Google Scholar 

  • Falenski KW, Thorpe AJ, Schlosburg JE, Cravatt BF, Abdullah RA, Smith TH, Selley DE, Lichtman AH, Sim-Selley LJ, Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Wiley JL (2010) FAAH(−/−) mice display differential tolerance, dependence, and cannabinoid receptor adaptation after Δ9-tetrahydrocannabinol and anandamide administration: dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Neuropsychopharmacology 35:1775–1787

    CAS  PubMed  Google Scholar 

  • Gifford AN, Bruneus M, Gatley SJ, Lan R, Makriyannis A, Volkow ND (1999) Large receptor reserve for cannabinoid actions in the central nervous system. J Pharmacol Exp Ther 288:478–483

    CAS  PubMed  Google Scholar 

  • Giuffrida A, McMahon LR (2010) In vivo pharmacology of endocannabinoids and their metabolic inhibitors: therapeutic implications in Parkinson's disease and abuse liability. Prostaglandins Lipid Mediat 91:90–103

    Article  CAS  Google Scholar 

  • Glennon RA, Young R (2011a) Drug discrimination: practical considerations. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 41–128

    Chapter  Google Scholar 

  • Glennon RA, Young R (2011b) Role of stereochemistry in drug discrimination studies. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 129–161

    Chapter  Google Scholar 

  • Hruba L, Ginsburg BC, McMahon LR (2012) Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by Δ9-tetrahydrocannabinol treatment in rhesus monkeys. J Pharmacol Exp Ther 342:843–849

    Article  CAS  PubMed  Google Scholar 

  • Järbe TUC (1986) State-dependent learning and drug discriminative control of behaviour: an overview. Acta Neurol Scand Suppl 109:37–59

    Article  PubMed  Google Scholar 

  • Järbe TUC (1989) Discrimination learning with drug stimuli: methods and applications. In: Boulten AA, Baker GB, Greenshaw AJ (eds) Neuromethods, vol 13, Psychopharmacology. Humana, Clifton, pp 513–563

    Google Scholar 

  • Järbe TUC (2011) Perceptual drug discriminative aspects of the endocannabinoid signaling system in animals and man. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 241–285

    Chapter  Google Scholar 

  • Järbe TUC, Gifford RS (2013) “Herbal incense”: designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci. doi:10.1016/j.lfs.2013.07.011

    PubMed  Google Scholar 

  • Järbe TUC, Swedberg MDB (1982) A conceptualization of drug discrimination learning. In: Colpaert FC, Slangen JL (eds) Drug discrimination: application in CNS pharmacology. Elsevier/North-Holland Biomed, Amsterdam, pp 327–341

    Google Scholar 

  • Järbe TUC, Lamb RJ, Makriyannis A, Lin S, Goutopoulos A (1998a) Δ9-THC training dose as a determinant for (R)-methanandamide generalization in rats. Psychopharmacol (Berl) 140:519–522

    Article  Google Scholar 

  • Järbe TUC, Sheppard R, Lamb RJ, Makriyannis A, Lin S, Goutopoulos A (1998b) Effects of delta-9-tetrahydrocannabinol and (R)-methanandamide on open-field behavior in rats. Behav Pharmacol 9:169–174

    PubMed  Google Scholar 

  • Järbe TUC, Lamb RJ, Lin S, Makriyannis A (2000) Δ9-THC training dose as a determinant for (R)-methanandamide generalization in rats: a systematic replication. Behav Pharmacol 11:81–86

    Article  PubMed  Google Scholar 

  • Järbe TUC, Lamb RJ, Lin S, Makriyannis A (2001) (R)-methanandamide and Δ9-THC as discriminative stimuli in rats: tests with the cannabinoid antagonist SR-141716 and the endogenous ligand anandamide. Psychopharmacol (Berl) 156:369–380

    Article  Google Scholar 

  • Järbe TUC, Andrzejewski ME, DiPatrizio NV (2002) Interactions between the CB1 receptor agonist delta-9-THC and the CB1 receptor antagonist SR-141716 in rats: open-field revisited. Pharmacol Biochem Behav 73:911–919

    Article  PubMed  Google Scholar 

  • Järbe TUC, DiPatrizio NV, Li C, Makriyannis A (2003) The cannabinoid receptor antagonist SR-141716 does not readily antagonize open-field effects induced by the cannabinoid receptor agonist (R)-methanandamide in rats. Pharmacol Biochem Behav 75:809–821

    Article  PubMed  Google Scholar 

  • Järbe TUC, Lamb RJ, Liu Q, Makriyannis A (2006) Discriminative stimulus functions of AM-1346, a CB1R selective anandamide analog, in rats trained with Δ9-THC or (R)-methanandamide (AM-356). Psychopharmacol (Berl) 188:315–323

    Article  Google Scholar 

  • Järbe TUC, Li C, Vadivel SK, Makriyannis A (2008) Discriminative stimulus effects of the cannabinoid CB1 receptor antagonist rimonabant in rats. Psychopharmacol (Berl) 198:467–478

    Article  Google Scholar 

  • Järbe TUC, Li C, Liu Q, Makriyannis A (2009) Discriminative stimulus functions in rats of AM1346, a high-affinity CB1R selective anandamide analog. Psychopharmacol (Berl) 203:229–239

    Article  Google Scholar 

  • Järbe TUC, Li C, Vadivel SK, Makriyannis A (2010) Discriminative stimulus functions of methanandamide and Δ9-THC in rats: tests with aminoalkylindoles (WIN55,212-2 and AM678) and ethanol. Psychopharmacol (Berl) 208:87–98

    Article  Google Scholar 

  • Järbe TUC, Deng H, Vadivel SK, Makriyannis A (2011a) Cannabinergic aminoalkylindoles, including AM678 = JWH018 found in ‘Spice’, examined using drug (Δ9-THC) discrimination for rats. Behav Pharmacol 22:498–507

    Article  PubMed Central  PubMed  Google Scholar 

  • Järbe TUC, Lemay BJ, Vemuri VK, Vadivel SK, Zvonok A, Makriyannis A (2011b) Central mediation and differential blockade by cannabinergics of the discriminative stimulus effects of the cannabinoid CB(1) receptor antagonist rimonabant in rats. Psychopharmacol (Berl) 216:355–365

    Article  Google Scholar 

  • Järbe TUC, Tai S, Lemay BJ, Nikas SP, Shukla VG, Zvonok A, Makriyannis A (2012) AM2389, a high-affinity, in vivo potent CB(1)-receptor-selective cannabinergic ligand as evidenced by drug discrimination in rats and hypothermia testing in mice. Psychopharmacol (Berl) 220:417–426

    Article  Google Scholar 

  • Jutkiewicz EM, Brooks EA, Kynaston AD, Rice KC, Woods JH (2011) Patterns of nicotinic receptor antagonism: nicotine discrimination studies. J Pharmacol Exp Ther 339:194–202

    Article  CAS  PubMed  Google Scholar 

  • Kangas BD, Delatte MS, Vemuri VK, Thakur GA, Nikas S, Makriyannis A, Bergman J (2013) Cannabinoid discrimination and antagonism by CB1 neutral and inverse agonist antagonists. J Pharmacol Exp Ther 344(3):561–567

    Article  CAS  PubMed  Google Scholar 

  • Kenakin TP (1993) Pharmacological analysis of drug–receptor interaction, 2nd edn. Raven Press, New York

    Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  CAS  PubMed  Google Scholar 

  • Lan R, Liu Q, Fan P, Lin S, Fernando SR, McCallion D, Pertwee R, Makriyannis A (1999) Structure–activity relationships of pyrazole derivatives as cannabinoid receptor antagonists. J Med Chem 42:769–776

    Article  CAS  PubMed  Google Scholar 

  • Lelas S, Spealman RD, Rowlett JK (2000) Using behavior to elucidate receptor mechanisms: a review of the discriminative stimulus effects of benzodiazepines. Exp Clin Psychopharmacol 8:294–311

    Article  CAS  PubMed  Google Scholar 

  • Li J-X, Gerak LR, France CP (2011) Drug discrimination studies in monkeys: drug dependence and withdrawal. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 417–430

    Chapter  Google Scholar 

  • Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, Burston JJ, Sim-Selley LJ, Lichtman AH, Wiley JL, Cravatt BF (2009) Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci U S A 106:20270–20275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14

    Article  CAS  PubMed  Google Scholar 

  • McMahon LR (2006) Characterization of cannabinoid agonists and apparent pA2 analysis of cannabinoid antagonists in rhesus monkeys discriminating Δ9-tetrahydrocannabinol. J Pharmacol Exp Ther 319:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • McMahon LR (2011) Chronic Δ9-tetrahydrocannabinol treatment in rhesus monkeys: differential tolerance and cross-tolerance among cannabinoids. Br J Pharmacol 162:1060–1073

    Article  CAS  PubMed  Google Scholar 

  • McMahon LR, Ginsburg BC, Lamb RJ (2008) Cannabinoid agonists differentially substitute for the discriminative stimulus effects of Δ9-tetrahydrocannabinol in C57BL/6J mice. Psychopharmacol (Berl) 198:487–495

    Article  CAS  Google Scholar 

  • National Institutes of Health (1996) Principles of Animal Laboratory Care. National Academy Press Washington, D.C.

  • Overton DA (1988) Similarities and differences between behavioral control by drug-produced stimuli and by sensory stimuli. In: Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin, pp 176–198

    Chapter  Google Scholar 

  • Paronis CA, Nikas SP, Shukla VG, Makriyannis A (2012) Δ9-Tetrahydrocannabinol acts as a partial agonist/antagonist in mice. Behav Pharmacol 23:802–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pério A, Rinaldi-Carmona M, Maruani J, Barth F, Le Fur G, Soubrié P (1996) Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist, SR 141716A. Behav Pharmacol 7:65–71

    Article  PubMed  Google Scholar 

  • Picker MJ, Dykstra LA (1989) Discriminative stimulus effects of mu and kappa opioids in the pigeon: analysis of the effects of full and partial mu and kappa agonists. J Pharmacol Exp Ther 249:557–566

    CAS  PubMed  Google Scholar 

  • Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, Nguyen PT, Ramesh D, Booker L, Burston JJ, Thomas EA, Selley DE, Sim-Selley LJ, Liu QS, Lichtman AH, Cravatt BF (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13:1113–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh H, Schulze DR, McMahon LR (2011) Tolerance and cross-tolerance to cannabinoids in mice: schedule-controlled responding and hypothermia. Psychopharmacol (Berl) 215:665–675

    Article  CAS  Google Scholar 

  • Sink KS, McLaughlin PJ, Wood JA, Brown C, Fan P, Vemuri VK, Peng Y, Olszewska T, Thakur GA, Makriyannis A, Parker LA, Salamone JD (2008) The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 33:946–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solinas M, Tanda G, Justinova Z, Wertheim CE, Yasar S, Piomelli D, Vadivel SK, Makriyannis A, Goldberg SR (2007) The endogenous cannabinoid anandamide produces Δ9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. J Pharmacol Exp Ther 321:370–380

    Article  CAS  PubMed  Google Scholar 

  • Stewart JL, McMahon LR (2010) Rimonabant-induced Δ9-tetrahydrocannabinol withdrawal in rhesus monkeys: discriminative stimulus effects and other withdrawal signs. J Pharmacol Exp Ther 334:347–356

    Article  CAS  PubMed  Google Scholar 

  • Stolerman IP (2011) The discrimination of drug mixtures. In: Glennon RA, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies. Wiley, Hoboken, pp 323–359

    Chapter  Google Scholar 

  • Stolerman IP, Childs E, Ford MM, Grant KA (2011) Role of training dose in drug discrimination: a review. Behav Pharmacol 22:415–429

    Article  PubMed Central  PubMed  Google Scholar 

  • Tai S, Järbe TUC, LeMay B, Nikas SP, Makriyannis A (2008) In vivo characterization of AM-2389, a potent CB1R selective agonist. International Cannabinoid Research Society (ICRS), Burlington

  • Thakur GA, Nikas SP, Li C, Makriyannis A (2005) Structural requirements for cannabinoid receptor probes. In: Pertwee RG (ed) Handbook of experimental pharmacology. Springer, New York, pp 210–246

    Google Scholar 

  • Walker EA, Young AM (1993) Discriminative-stimulus effects of the low efficacy mu agonist nalbuphine. J Pharmacol Exp Ther 267:322–330

    CAS  PubMed  Google Scholar 

  • Walker EA, Young AM (2002) Clocinnamox distinguishes opioid agonists according to relative efficacy in normal and morphine-treated rats trained to discriminate morphine. J Pharmacol Exp Ther 302:101–110

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Barrett RL, Lowe J, Balster RL, Martin BR (1995) Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats. Neuropharmacology 34:669–676

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Matthew Walentiny D, Vann RE, Baskfield CY (2011) Dissimilar cannabinoid substitution patterns in mice trained to discriminate Δ9-tetrahydrocannabinol or methanandamide from vehicle. Behav Pharmacol 22:480–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolff MC, Leander JD (1997) Differentiation of 5-HT1A receptor ligands by drug discrimination. Eur J Pharmacol 333:113–122

    Article  CAS  PubMed  Google Scholar 

  • Woolverton WL, Schuster CR (1983) Behavioral and pharmacological aspects of opioid dependence: mixed agonist-antagonists. Pharmacol Rev 35:33–52

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States Public Health Service grants 5RO1DA 009064–19, 5R37DA 023142–5, 5PO1DA 009158–14, and 5RO1DA 007215–18 from the National Institute on Drug Abuse (NIDA). We thank R. Gifford and three anonymous reviewers for their thoughtful comments on earlier drafts of the manuscript and Dr. Ken Mackie (Indiana University) for generously providing rat CB1R-transfected HEK cells. We thank NIDA for supplies of (−)-Δ9-THC, (−)-CP55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol) and rimonabant.

Conflict of interest

All authors declare that there is no actual or potential conflict of interest related to this manuscript. Authors declare that the study sponsor did not have any role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torbjörn U. C. Järbe.

Additional information

Parts of these data were presented at the annual meeting of the International Cannabinoid Research Society symposium held last June 25 to 29, 2008, at the MacDonald Aviemore Highland Resort, Aviemore, Scotland (Tai et al. 2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järbe, T.U.C., LeMay, B.J., Halikhedkar, A. et al. Differentiation between low- and high-efficacy CB1 receptor agonists using a drug discrimination protocol for rats. Psychopharmacology 231, 489–500 (2014). https://doi.org/10.1007/s00213-013-3257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3257-8

Keywords

Navigation