Skip to main content

Advertisement

Log in

Behavioral effects of orally administered glycine in socially housed monkeys chronically treated with phencyclidine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Schizophrenia is a major mental disorder. Dissociative anesthetics such as phencyclidine (PCP) produce a syndrome in humans that is clinically indistinguishable from schizophrenia by blocking neurotransmission at N-methyl-d-aspartate (NMDA)-type glutamate receptors. NMDA receptors in brain are modulated by the amino acid glycine (GLY), which reverses neurochemical and behavioral effects of PCP in rodents. The present study investigates GLY effects on PCP-induced behavior in primates.

Objectives

In primates, PCP induces characteristic behavioral symptoms that can be used to model positive and negative symptoms of schizophrenia. This study investigated the effects of GLY treatment in ten socially housed monkeys receiving chronically infused PCP.

Methods

Ten monkeys received escalating then stable doses of continuously infused PCP through a series of subcutaneously implanted osmotic minipumps. During a segment of the highest PCP dose period, monkeys were concurrently treated with glycine (2 g kg−1 day−1 bid p.o.). Behavioral observations were recorded during baseline and treatment periods.

Results

Chronic PCP treatment was associated with a progressive decrease in stereotyped pacing and a progressive increase in scanning behavior. Eight of ten animals had one or more episodes of extreme motoric and physiological responses precipitated by stressful events. GLY treatment significantly reversed the effects of PCP on stereotyped pacing but had no effect on scanning.

Conclusions

The results support GLY treatment as beneficial for negative symptoms of schizophrenia. Although further validation is needed, the results also indicate that chronic PCP in primates may be an appropriate model system for development of drugs targeting positive and negative symptoms of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of social behavior: sampling methods. Behaviour 49:227–265

    PubMed  CAS  Google Scholar 

  • Balster RL, Chait LD (1978) The behavioral effects of phencyclidine in animals. In: Peterson RC, Stillman RC (eds) Phencyclidine (PCP) abuse: an appraisal. NIDA Res Monogr 21:53–65

  • Burns R, Lerner S (1981) The effects of phencyclidine in man: a review. In: Domino E (ed) PCP (phencyclidine): historical and current perspectives. NPP Books, Ann Arbor, pp 449–469

    Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    Article  PubMed  CAS  Google Scholar 

  • Chen GM, Weston JK (1960) The analgesic and anesthetic effect of 1-(1-phenylcyclohexyl) piperidine HCI on the monkey. Anesth Analg 39:132–137

    Article  PubMed  CAS  Google Scholar 

  • Cheney DL, Seyfarth RM (1989) Redirected aggression and reconciliation among vervet monkeys, Cercopithecus aethiops. Behaviour 110:258–275

    Google Scholar 

  • Cochran SM, Steward LJ, Kennedy MB, McKerchar CE, Pratt JA, Morris BJ (2003) Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28:265–275

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 3:241–253

    PubMed  CAS  Google Scholar 

  • Coyle JT, Tsai G (2004) The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology 174:32–38

    Article  PubMed  CAS  Google Scholar 

  • Curran HV, Monaghan L (2001) In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction 96:749–760

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis GG, Goldstein E (1978) Long term treatment of adolescent PCP abusers. In: Peterson RC, Stillman RI (eds) Phencyclidine (PCP) abuse: an appraisal, NIDA Res Monogr 21, US Government Printing Office, Washington, DC, pp 254–271

  • Diaz P, Bhaskara S, Dursun SM, Deakin B (2005) Double-blind, placebo-controlled, crossover trial of clozapine plus glycine in refractory schizophrenia negative results. J Clin Psychopharmacol 25:277–278

    Article  PubMed  Google Scholar 

  • Dingledine R, Kleckner NW, McBain CJ (1990) The glycine coagonist site of the NMDA receptor. Adv Exp Med Biol 268:17–26

    PubMed  CAS  Google Scholar 

  • Ellinwood EH Jr (1971) Effect of chronic methamphetamine intoxication in rhesus monkeys. Biol Psychiatry 3:25–32

    PubMed  CAS  Google Scholar 

  • Ellison G (1995) The N-methyl-d-aspartate anatagonists phencyclidine, ketamine and dizolcipine as both behavioral and anatomical models of the dementias. Brain Res Brain Res Rev 20:250–267

    Article  PubMed  CAS  Google Scholar 

  • Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC (2000) Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 57:826–828

    Article  Google Scholar 

  • Fishkin RJ, Zhou L, Winslow JT (1996) PCP-induced deficits in squirrel monkey social behavior are differentially affected by clozapine and haloperidol. Soc Neurosci Abstracts 22:177

    Google Scholar 

  • Fleiss JC (1981) Statistical methods for rates and proportions, 2nd edn. Wiley, New York

    Google Scholar 

  • Goff DC, Henderson DC, Evins AE, Amico E (1999a) A placebo-controlled crossover trial of d-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry 45:512–514

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT (1999b) A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 56:21–27

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JM (2000) The new generation of antipsychotic drugs: How atypical are they? Int J Neuropsychopharmacol 3:339–349

    Article  PubMed  CAS  Google Scholar 

  • Goosen C (1981) Abnormal behavior patterns in rhesus monkeys: symptoms of mental disease? Biol Psychiatry 16:697–716

    PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry 169:610–617

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC (2002) Placebo-controlled trial of d-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 159:480–482

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55:165–171

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, Catinari S, Ermilov M (2005) d-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57:577–585

    Article  PubMed  CAS  Google Scholar 

  • Hood WF, Compton RP, Monahan JB (1989) d-cycloserine: a ligand for the N-methyl-d-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 98:91–95

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997, 979

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1989) Interaction of [3H]MK-801 with multiple states of the N-methyl- d-aspartate receptor complex of rat brain. Proc Natl Acad Sci USA 86:740–744

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Sershen H, Hashim A, Lajtha A (1997) Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 17:202–204

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999) Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4:385–391

    PubMed  CAS  Google Scholar 

  • Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H (2004) Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-d-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 29:300–307

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Duncan L, Balla A, Sershen H (2005) Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10:275–287

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Redmond DE, Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953–955

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Roth RH, Taylor JD, Roth RH (2000) Object retrieval/detour deficits in monkeys produced by prior subchronic phencyclidine administration: evidence for cognitive impulsivity. Biol Psychiatry 48:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick B, Carpenter WT (1995) Drug development and the deficit syndrome of schizophrenia. Biol Psychiatry 38:277–278

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 51:199–214

    PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, Laporte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz K, O’Keeffe RT, Lee KL, Avery J (1985) KIBOS: a microcomputerized system for the continuous collection and analysis of behavioral data. Appl Anim Behav Sci 13:203–218

    Article  Google Scholar 

  • Lifshitz K, O’Keeffe RT, Lee KL (1987) Cebus monkey behavioral interactions with fluphenazine decanoate, d-amphetamine and environmental stress. Psychopharmacol Bull 23:487–492

    CAS  Google Scholar 

  • Lifshitz K, O’Keeffe RT, Lee KL, Linn GS, Mase D, Avery J, Lo ES, Cooper TB (1991) Effect of extended depot fluphenazine treatment and withdrawal on social and other behaviors of Cebus apella monkeys. Psychopharmacology 105:492–500

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz K, O’Keeffe RT, Linn GS, Lee KL, Camp-Bruno JA, Suckow RF (1997) Effects of dopamine agonists on Cebus apella monkeys with previous long-term exposure to fluphenazine. Biol Psychiatry 41:657–667

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, Javitt DC (2001) Phencyclidine (PCP) induced deficits of prepulse inhibition in monkeys. Neuroreport 12:117–120

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, Mase D, LaFrancois D, O’Keeffe RT, Lifshitz K (1995) Social and menstrual cycle phase influences on the behavior of group-housed Cebus apella. Am J Primatol 35:41–57

    Article  Google Scholar 

  • Linn GS, O’Keeffe RT, Schroeder CE, Lifshitz K, Javitt DC (1999) Behavioral effects of chronic phencyclidine in socially housed monkeys. Neuroreport 10:2789–2793

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, O’Keeffe RT, Lifshitz K, Lee K, Camp-Lifshitz J (2001) Increased incidence of dyskinesias and other behavioral effects of re-exposure to neuroleptic treatment in social colonies of Cebus apella monkeys. Psychopharmacology 153:285–294

    Article  PubMed  CAS  Google Scholar 

  • Linn GS, Negi SS, Gerum SV, Javitt DC (2003) Reversal of phencyclidine-induced prepulse inhibition deficits by clozapine in monkeys. Psychopharmacology 169:234–239

    Article  PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of new schizophrenomimetic drug-Sernyl. AMA Arch Neurol Psychiatry 81:363–369

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–308

    Article  PubMed  CAS  Google Scholar 

  • Mason GJ (1991) Stereotypies: a critical review. Anim Behav 41:1015–1037

    Article  Google Scholar 

  • Mason GJ (1993) Forms of stereotypic behavior. In: Lawrence AB, Rushen J (eds) Stereotypic animal behavior. Cab International, Wallingford, pp 8–40

    Google Scholar 

  • Meltzer HY (1997) Treatment-resistant schizophrenia-the role of clozapine. Curr Med Res Opin 14:1–20

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2005) N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology 179:30–53

    Article  PubMed  CAS  Google Scholar 

  • Miller RE, Levine JM, Mirsky TA (1973) Effects of psychoactive drugs on non-verbal communication and group social behavior of monkeys. J Pers Soc Psychol 28:396–405

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Anderson E, Lynch G, Baudry M (1986) Selective impairment of learning and blockage of long-term potentiation by an N-methyl-d-aspartate receptor antagonist AP5. Nature 319:774–776

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe RT, Lifshitz K, Linn G (1983) Relationships among dominance, interanimal spatial proximity and affiliative social behavior in stumptail macaques (Macaca arctoides). Appl Anim Ethol 9:331–339

    Article  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Munvad I (1974) Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10

    Article  PubMed  CAS  Google Scholar 

  • Reynolds IJ, Miller RJ (1990) Allosteric modulation of N-methyl-d-aspartate receptors. Adv Pharmacol 21:101–126

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF (1982) Stereotypy in monkeys and humans. Psychol Med 12:61–72

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF (1983) Is there a relationship between social isolation, cognitive inflexibility, and behavioral stereotypy? An analysis of the effects of amphetamine in the marmoset. Prog Clin Biol Res 131:101–135

    PubMed  CAS  Google Scholar 

  • Rujescu D, Bender A, Keck M, Hartmann AM, Ohl F, Raeder H, Giegling I, Genius J, McCarley RW, Moller HJ, Grunze H (2006) A pharmacological model for psychosis based on N-methyl-d-aspartate receptor hypofunction: molecular, cellular, functional and behavioral abnormalities. Biol Psychiatry 59:721–729

    Article  PubMed  CAS  Google Scholar 

  • Sams-Dodd F, Newman JD (1997) Effects of administration regime on the psychotomimetic properties of d-amphetamine on the squirrel monkey (Saimiri sciureus). Pharmacol Biochem Behav 57:571–580

    Article  Google Scholar 

  • Sayed Y, Garrison JM (1983) The dopamine hypothesis of schizophrenia and the antagonistic action of neuroleptic drugs-a review. Psychopharmacol Bull 19:283–288

    PubMed  CAS  Google Scholar 

  • Schiørring E (1979a) Social isolation and other behavioral changes in groups of adult vervet monkeys (Cercopithecus aethiops) produced by low nonchronic doses of d-amphetamine. Psychopharmacology 64:297–302

    Article  PubMed  Google Scholar 

  • Schiørring E (1979b) An open field study of stereotyped locomotor activity in amphetamine-treated rats. Psychopharmacology 66:281–287

    Article  PubMed  Google Scholar 

  • Schlemmer RF, Davis JM (1983) A comparison of three psychotomimetic-induced models of psychosis in nonhuman primate social colonies. In: Miczek K (ed) Ethopharmacology: primate models of neuropsychiatric disorders. Alan R. Liss, New York, pp 33–78

    Google Scholar 

  • Seigel RK (1978) Phencyclidine and ketamine intoxication: a study of four populations of recreational users. In: Peterson RC, Stillman RI (eds) Phencyclidine (PCP) Abuse: an appraisal. NIDA Research Monograph 21, US Government Printing Office, Washington, DC, pp 254–271

    Google Scholar 

  • Singer M, Mirhej G, Shaw S, Saleheen H, Vivian J, Hastings E, Rohena L, Jennings D, Navarro J, Santelices C, Wu AH, Smith A, Perez A (2005) When the drug of choice is a drug of confusion: embalming fluid use in inner city Hartford, CT. J Ethn Subst Abuse 4:73–96

    Article  PubMed  Google Scholar 

  • Snyder SH (1981) Dopamine receptors, neuroleptics, and schizophrenia. Am J Psychiatry 138:460–464

    PubMed  CAS  Google Scholar 

  • Steinpreis RE (1996) The behavioral and neurochemical effects of phencyclidine in humans and animals: some implications for modeling psychosis. Behav Brain Res 74:45–55

    Article  CAS  PubMed  Google Scholar 

  • Stringer J, Greenfield L, Hackett J, Guyenet P (1983) Blockage of long-term potentiation by phencyclidine and sigma opiates in the hippocampus in vivo and in vitro. Brain Res 280:127–138

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA (1998) Schizophrenia and glutamatergic transmission. Crit Rev Neurobiol 12:21–36

    PubMed  CAS  Google Scholar 

  • Thompson DM, Winsauer PJ, Mastropaolo J (1987) Effects of phencyclidine, ketamine and MDMA on complex operant behavior in monkeys. Pharmacol Biochem Behav 26:401–405

    Article  PubMed  CAS  Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine-induced hyperactivity by glycine in mice. Neurochem Res 11:393–400

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT (1999) d-Serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 156:1822–1825

    PubMed  CAS  Google Scholar 

  • Tsai GE, Yang P, Chang Y-C, Chong M-Y (2006) d-Alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59:230–234

    Article  PubMed  CAS  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72:225–234

    Article  PubMed  Google Scholar 

  • Walberg CB, McCarron MM, Schulze BN (1983) Quantitation of phencyclidine in serum by enzyme immunoassay: results in 405 patients. J Anal Toxicol 7:106–110

    PubMed  CAS  Google Scholar 

  • Woods SW, Thomas L, Tully E, Hawkins KA, Miller TJ, Rosen JL, Pearlson G, McGlashan TH (2004) Effects of oral glycine in the schizophrenia prodrome. Schizophr Res 70:79

    Google Scholar 

Download references

Acknowledgments

We thank the NKI Clinical Chemistry Division for performing the serum PCP assays, Robert Lindsley for assistance with pump implant surgery, and Kai Lee for writing the behavioral data collection programs. This study was funded in part by grants R01 DA03383 and K02 MH01439 to DCJ. Conflict of interest: DCJ holds intellectual property rights for use of glycine in treatment of schizophrenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Linn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linn, G.S., O’Keeffe, R.T., Lifshitz, K. et al. Behavioral effects of orally administered glycine in socially housed monkeys chronically treated with phencyclidine. Psychopharmacology 192, 27–38 (2007). https://doi.org/10.1007/s00213-007-0771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0771-6

Keywords

Navigation