Skip to main content

Advertisement

Log in

N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Activation of “co-agonist” N-methyl-d-aspartate (NMDA) and GlycineB sites is mandatory for the operation of NMDA receptors, which play an important role in the control of mood, cognition and motor function.

Objectives

This article outlines the complex regulation of activity at GlycineB/NMDA receptors by multiple classes of endogenous ligand. It also summarizes the evidence that a hypoactivity of GlycineB/NMDA receptors contributes to the pathogenesis of psychotic states, and that drugs which enhance activity at these sites may possess antipsychotic properties.

Results

Polymorphisms in several genes known to interact with NMDA receptors are related to an altered risk for schizophrenia, and psychotic patients display changes in levels of mRNA encoding NMDA receptors, including the NR1 subunit on which GlycineB sites are located. Schizophrenia is also associated with an overall decrease in activity of endogenous agonists at GlycineB/NMDA sites, whereas levels of endogenous antagonists are elevated. NMDA receptor “open channel blockers,” such as phencyclidine, are psychotomimetic in man and in rodents, and antipsychotic agents attenuate certain of their effects. Moreover, mice with genetically invalidated GlycineB/NMDA receptors reveal similar changes in behaviour. Finally, in initial clinical studies, GlycineB agonists and inhibitors of glycine reuptake have been found to potentiate the ability of “conventional” antipsychotics to improve negative and, albeit modestly, cognitive and positive symptoms. In contrast, therapeutic effects of clozapine are not reinforced, likely since clozapine itself enhances activity at NMDA receptors.

Conclusions

Reduced activity at NMDA receptors is implicated in the aetiology of schizophrenia. Correspondingly, drugs that (directly or indirectly) increase activity at GlycineB sites may be of use as adjuncts to other classes of antipsychotic agent. However, there is an urgent need for broader clinical evaluation of this possibility, and, to date, there is no evidence that stimulation of GlycineB sites alone improves psychotic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMPA:

dl-α-NH2-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid

d-AAO:

d-amino acid oxidase

DCS:

d-Cycloserine

EAAT:

excitatory amino acid transporter

GCP:

glutamate carboxypeptidase

GlyT:

glycine transporter

GRI:

glycine reuptake inhibitor

NAAG:

N-acetyl-aspartate-glutamate

NMDA:

N-methyl-d-aspartate

mGluR:

metabotropic

OCB:

open channel blocker

PCP:

phencyclidine

SNAT:

small neutral amino acid transporter

vGluT:

vesicular glutamate transporter

References

  • Abel KM, Allin MPG, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacology 44:729–737

    Google Scholar 

  • Adell A, Artigas F (2004) The somatodentritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci Biobehav Res 28:415–431

    Google Scholar 

  • Adler CM, Malhotra AK, Elman I, Goldberg T, Egan M, Pickar D, Breier A (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    Google Scholar 

  • Aghajanian GK, Marek GJ (2000) Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Interactive 31:302–312

    Google Scholar 

  • Ahmadi S, Muth-Selbach U, Lauterbach A, Lipfert P, Neuhuber WL, Zeilhofer HU (2003) Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science 300:2094–2097

    Google Scholar 

  • Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE, Jones EG (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenia. J Neurosci 16:19–30

    Google Scholar 

  • Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    Google Scholar 

  • Anand A, Charney D, Oren DA, Berman RM, Hu XS, Cappiello A, Krystal JH (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine. Arch Gen Psychiatry 57:270–276

    Article  CAS  PubMed  Google Scholar 

  • Andersen JD, Pouzet B (2004) Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of d-serine. Neuropsychopharmacology 29:1080–1090

    Google Scholar 

  • Andersen JM, Lindberg V, Myhrer T (2002) Effects of scopolamine and d-cycloserine on non-spatial reference memory in rats. Behav Brain Res 129:211–216

    Google Scholar 

  • Andreassen OA, Waage J, Finsen B, Jorgensen HA (2003) Memantine attenuates the increase in striatal preproenkephalin mRNA expression and development of haloperidol induced persistent oral dyskinesias in rats. Brain Res 994:188–192

    Google Scholar 

  • Arvanov VL, Liang X, Schwartz J, Grossman S, Wang RY (1997) Clozapine and haloperidol modulate NMDA- and non-NMDA receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro. J Pharmacol Exp Ther 283:226–234

    Google Scholar 

  • Bacich DJ, Ramadan E, O’Keefe DS, Bukhari N, Wegorzewska I, Ojeifo O, Olszewski R, Wrenn CC, Bzdega T, Wroblewska B, Heston WD, Neale JH (2002) Deletion of the glutamate carboxypeptidase II gene in mice reveals a second enzyme activity that hydrolyzes N-acetylaspartylglutamate. J Neurochem 83:20–29

    Google Scholar 

  • Bakshi VP, Tricklebank M, Neijt HC, Lehmann-Masten V, Geyer MA (1999) Disruption of prepulse inhibition and increases in locomotor activity by competitive N-methyl-aspartate receptor antagonists in rats. J Pharmacol Exp Ther 288:643–652

    Google Scholar 

  • Balla A, Hashim A, Burch S, Javitt DC, Lajtha A, Sershen H (2001a) Phencyclidine-induced dysregulation of dopamine response to amphetamine in prefrontal cortex and striatum. Neurochem Res 26:1001–1006

    Google Scholar 

  • Balla A, Koneru R, Smiley J, Sershen H, Javitt DC (2001b) Continuous phencyclidine treatment induces schizophrenia-like hyperreactivity of striatal dopamine release. Neuropsychopharmacology 25:157–164

    Google Scholar 

  • Balla A, Sershen H, Serra M, Koneru R, Javitt DC (2003) Subchronic continuous phencyclidine administration potentiates amphetamine-induced frontal cortex dopamine release. Neuropsychopharmacology 28:34–44

    Google Scholar 

  • Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal AM, Mutel V, Borroni E, Kemp JA, Bluethmann H, Kew JNC (2002) Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 22:6713–6723

    PubMed  Google Scholar 

  • Bardgett ME, Wrona CT, Newcomer JW, Csernansky JG (1993) Subcortical excitatory amino acid levels after acute and subchronic administration of typical and atypical neuroleptics. Eur J Pharmacol 230:245–250

    Google Scholar 

  • Barinka C, Sacha P, Sklenar J, Man P, Bezouska K, Slusher BS, Konvalinka J (2004) Identification of N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity. Protein Sci 13:1627–1635

    Google Scholar 

  • Beardsley PM, Ratti E, Balster RL, Willetts J, Trist D (2002) The selective glycine antagonist gavestinel lacks phencyclidine-like behavioural effects. Behav Pharmacol 13:583–592

    Google Scholar 

  • Berger MA, Defagot MC, Villar MJ, Antonelli MC (2001) D4 and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain. Neurochem Res 26:345–352

    Google Scholar 

  • Berger UV, Luthi-Carter R, Passani LA, Elkabes S, Black I, Konradi C, Coyle JT (1999) Glutamate carboxypeptidase II is expressed by astrocytes in the adult rat nervous system. J Comp Neurol 415:52–64

    Google Scholar 

  • Bergeron R, Coyle JT, Tsai G, Greene RW (2005) NAAG reduces NMDA receptor current in CAI hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsychopharmacology 30:7–16

    Google Scholar 

  • Bezzi P, Volterra A (2001) A neuron-glia signalling network in the active brain. Curr Opin Neurobiol 11:387–394

    Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäusser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Whittemore ER, Zhou ZL, Woodward RM, Chase TN (1999) Differing effects of NMDA receptor subtype selective antagonists on dyskinesia in levodopa treated 1-methyl-4-phenyl-tetrahydropyridine monkeys. J Pharmacol Exp Ther 290:1034–1040

    Google Scholar 

  • Bräuner-Osborne H, Egebjerg J, Nielsen E, Madsen U, Krogsgaard-Larsen P (2000) Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 43:2609–2645

    Google Scholar 

  • Breese GR, Knapp DJ, Moy SS (2002) Integrative role for serotonergic and glutamatergic mechanisms in actions of NMDA antagonists: relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 26:441–455

    Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel position emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    Article  Google Scholar 

  • Bressan RA, Erlandsson K, Mulligan RS, Gunn RN, Cunningham VJ, Owens J, Ell PJ, Pilowsky LS (2003) Evaluation of NMDA receptors in vivo in schizophrenic patients with [123I]CNS 1261 and SPET. Ann NY Acad Sci 1003:364–367

    Google Scholar 

  • Brimecombe JC, Gallagher MJ, Lynch DR, Aizenman E (1998) An NR2B point mutation affecting haloperidol and CP101,606 sensitivity of single recombinant NMDA receptors. J Pharmacol Exp Ther 286:627–634

    Google Scholar 

  • Burbaeva GS, Boksha IS, Turishcheva MS, Vorobyeva EA, Savushkina OK, Tereshkina EB (2003) Glutamine synthetase and glutamate dehydrogenase in the prefrontal cortex of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:675–680

    Google Scholar 

  • Buonanno A, Fischbach GD (2001) Neuregulin and ErbB receptor signalling pathways in the nervous system. Curr Opin Neurobiol 11:287–296

    Google Scholar 

  • Bzdega P, Crowe SL, Ramadan ER, Sciarretta KH, Olszewski RT, Ojeifo OA, Rafalski VA, Wroblewska B, Neale JH (2004) The cloning and characterization of a second brain enzyme with NAAG peptidase activity. J Neurochem 89:627–635

    Google Scholar 

  • Campbell CM, Butelman ER, Woods JH (1999) Effects of (+)-HA-966, CGS-19755, phencyclidine, and dizocilpine on repeated acquisition of response chains in pigeons: systemic manipulation of central glycine sites. J Pharmacol Exp Ther 289:521–527

    Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Google Scholar 

  • Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1–17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32:87–95

    Google Scholar 

  • Centonze D, Usiello A, Costa C, Picconi B, Erbs E, Bernardi G, Borrelli E, Calabresi P (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J Neurosci 24:8214–8222

    Google Scholar 

  • Cepeda C, Hurst RS, Altemus KL, Flores-Hernandez J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001) Facilitated glutamatergic transmission in striatum of D2 receptor-deficient mice. J Neurophysiol 85:659–670

    Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cul J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 413:793–798

    Google Scholar 

  • Chen L, Yang CR (2002) Interaction of dopamine D1 and NMDA receptors mediates acute clozapine potentiation of glutamate EPSPs in rat prefrontal cortex. J Neurophysiol 87:2324–2336

    Google Scholar 

  • Chen LW, Wei LC, Lang B, Ju G, Chan YS (2001) Differential expression of AMPA receptor subunits in dopamine neurons of the rat brain: a double immunocytochemical study. Neuroscience 106:149–160

    Google Scholar 

  • Chen L, Muhlhauser M, Yang CR (2003) Glycine transporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99:13675–13680

    Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004a) Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology 29:1353–1362

    Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004b) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253

    Google Scholar 

  • Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160:1100–1109

    Google Scholar 

  • Collier DA (2003) The genetics of schizophrenia: glutamate not dopamine? Eur J Pharmacol 480:177–184

    Google Scholar 

  • Cook SP, Galve-Roperh I, del Pozo AM, Rodriguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792

    Google Scholar 

  • Cordi A, Lacoste JM, Audinot V, Millan MJ (1999) Design, synthesis and structure–activity relationships of novel strychnine-insensitive glycine receptor ligands. Bioorg Med Chem Lett 9:1409–1414

    Google Scholar 

  • Coyle JT (1997) The nagging question of the function of N-acetylaspartylglutamate. Neurobiol Dis 4:231–238

    Google Scholar 

  • Coyle JT, Tsai G (2004) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515

    Google Scholar 

  • Crow TJ (2004) Cerebral asymmetry and the lateralization of language: core deficits in schizophrenia as pointers to the gene. Curr Opin Psychiatry 17:97–106

    Google Scholar 

  • Cubelos B, Gonzalez-Gonzalez IM, Gimenez C, Zafra F (2005) Amino acid transporter SNATs localizes to glial cells in the rat brain. Glia 49:230–244

    Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and NMDA receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  • Deitmer JW, Broer A, Broer S (2003) Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem 87:127–135

    Google Scholar 

  • De Lima AD, Opitz T, Voigt T (2004) Irreversible loss of subpopulation of cortical interneurons in the absence of a glutamatergic network. Eur J Neurosci 19:2931–2943

    Google Scholar 

  • De Miranda J, Santoro A, Engelender S, Wolosker H (2000) Human serine racemase: molecular cloning, genomic organization and functional analysis. Gene 256:183–188

    Google Scholar 

  • Depoortere R, Decobert M, Cudennec A, Claustre Y, Terranova J, Françon D, Alonso R, Simiand J, Perrault G, Griebel G, Soubrié P, Scatton B (2004) SSR504734, a selective and reversible inhibitor of the glycine transporter type 1 (GLYT1): III) effects in tests predictive of antipsychotic activity. Int J Neuropsychopharmacol 7:S433

    Google Scholar 

  • De Souza IEJ, McBean GJ, Meredith GE (1999) Chronic haloperidol treatment impairs glutamate transport in the rat striatum. Eur J Pharmacol 382:139–142

    Google Scholar 

  • Deutsch SI, Rosse RB, Schwartz BL, Mastropaolo J (2001) A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24:43–49

    Google Scholar 

  • Di Maria E, Gulli R, Begni S, De Luca A, Bignotti S, Pasini A, Bellone E, Pizzuti A, Dallapiccola B, Novelli G, Ajmar F, Gennarelli M, Mandich P (2004) Variations in the NMDA receptor subunit 2B gene (GRIN2B) and schizophrenia: a case-control study. Am J Med Genet 128B:27–29

    Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  PubMed  Google Scholar 

  • Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–3728

    Google Scholar 

  • Dolinska M, Zablocka B, Sonnewald U, Albrecht J (2004) Glutamine uptake and expression of mRNA’s of glutamine transporting proteins in mouse cerebellar and cerebral cortical astrocytes and neurons. Neurochem Int 44:75–89

    Google Scholar 

  • Dracheva S, Marras SA, Elhaken SL, Kramer FR, Davis KL, Haroutunian V (2001) N-Methyl-d-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry 158:1400–1410

    Google Scholar 

  • D’Souza DC, Gil R, Cassello K, Morrissey K, Abi-Saab D, White J, Sturwold R, Bennett A, Karper LP, Zuzarte E, Charney DS, Krystal JH (2000) IV Glycine and oral d-cycloserine effects on plasma and CSF amino acids in healthy humans. Biol Psychiatry 47:450–462

    Article  CAS  PubMed  Google Scholar 

  • Duncan EJ, Szilagyi S, Schwartz MP, Bugarski-Kirola D, Kunzova A, Negi S, Stephanides M, Efferen TR, Angrist B, Peselow E, Corwin J, Gonzenbach S, Rotrosen JP (2004a) Effects of d-cycloserine on negative symptoms in schizophrenia. Schizophr Res 71:239–248

    Google Scholar 

  • Duncan GE, Moy SS, Perez A, Eddy DM, Zinzow WM, Lieberman JA, Snouwaert JN, Koller BH (2004b) Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507–519

    Google Scholar 

  • Dyker AG, Edwards KR, Fayad PB, Hormes JT, Lees KR (1999) Safety and tolerability of aptiganel hydrochloride in patients with acute ischemic stroke. Stroke 30:2038–2042

    Google Scholar 

  • Elkin A, Kalidindi S, McGuffin P (2004) Have schizophrenia genes been found? Curr Opin Psychiatry 17:107–113

    Google Scholar 

  • Erhardt S, Engberg G (2002) Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 175:45–53

    Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindström LH, Engberg G (2001) Kynurenic acid levels are elevated in cerebro spinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Google Scholar 

  • Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56:255–260

    Google Scholar 

  • Ermilov M, Kremer I, Blanaru M, Bloch B, Neeman G, Javitt D, Heresco-Levy U (2004) Glutamatergic neurotransmission-associated amino acids: plasma levels and relation to symptoms. Int J Psychopharmacol 7:S285

    Google Scholar 

  • Evins AE, Amico E, Shih V, Goff DC (1997) Clozapine treatment increases serum glutamate and aspartate compared to conventional neuroleptics. J Neural Transm 104:761–766

    Google Scholar 

  • Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC (2000) Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry 157:826–828

    Article  CAS  PubMed  Google Scholar 

  • Evins AE, Amico E, Posever TA, Toker R, Goff DC (2002) d-Cycloserine added to risperidone in primary negative symptoms of schizophrenia. Schizophr Res 56:19–23

    Google Scholar 

  • Farber NB (2003) The NMDA receptor hypofunction model of psychosis. Ann NY Acad Sci 1003:119–130

    Google Scholar 

  • Faustman WO, Bardgett M, Faull KF, Pfefferbaum A, Csernansky JG (1999) Cerebrospinal fluid glutamate inversely correlates with positive symptom severity in unmedicated male schizophrenic/schizoaffective patients. Biol Psychiatry 45:68–75

    Google Scholar 

  • Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT (2004) Structure–activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid. Br J Pharmacol 141:508–516

    Google Scholar 

  • Fitzgerald LW, Deutsch AY, Gassic G, Heinemann SE, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic. Drugs J Neurosci 95:2453–2461

    Google Scholar 

  • Flores C, Coyle JT (2003) Regulation of glutamate carboxypeptidase II function in corticolimbic regions of rat brain by phencyclidine, haloperidol, and clozapine. Neuropsychopharmacology 28:1227–1234

    Google Scholar 

  • Fujita T, Kishida T, Wada M, Okada N, Yamamoto A, Leibach FH, Ganapathy V (2004) Functional characterization of brain peptide transporter in rat cortex: identification of high-affinity type H+/peptide transporter PEPT2. Brain Res 997:52–61

    Google Scholar 

  • Fukumaki Y, Shibata H (2003) Glutamate receptor genes as candidates for schizophrenia susceptibility. Drug Dev Res 60:137–151

    Google Scholar 

  • Gadea A, Lopez-Colomé AM (2001) Glial transporters for glutamate, glycine, and GABA III. Glycine transporters. J Neurosci Res 64:218–222

    Google Scholar 

  • Gan L, Falzone TL, Zhang K, Rubinstein M, Baldessarini RJ, Tarazi FI (2004) Enhanced expression of dopamine D1 and glutamate NMDA receptors in dopamine D4 receptor knockout mice. J Mol Neurosci 22:167–178

    Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of NMDA receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149

    Google Scholar 

  • Garcia RA, Vasudevan K, Buonanno A (2000) The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A 97:3596–3601

    Google Scholar 

  • Garrido Sanabria ER, Wozniak KM, Slusher BS, Keller A (2004) GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 91:182–193

    Google Scholar 

  • Gemperle AY, Enz A, Pozza MF, Lüthi A, Olpe HR (2003) Effects of clozapine, haloperidol and iloperidone on neurotransmission and synaptic plasticity in prefrontal cortex and their accumulation in brain tissue: an in vitro study. Neuroscience 117:681–695

    Google Scholar 

  • Georges F, Aston-Jones G (2002) Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 22:5173–5187

    Google Scholar 

  • Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S (2003) Evidence for association of schizophrenia with variation in the 8p21.3 gene PPP3CC encoding calcineurin gamma subunit. Proc Natl Acad Sci U S A 100:8993–8998

    Google Scholar 

  • Gerlai R, Pisacane P, Erickson S (2000) Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioural tasks. Behav Brain Res 109:219–227

    Google Scholar 

  • Geyer MA, Kreba-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  CAS  PubMed  Google Scholar 

  • Ghose S, Weickert CS, Colvin SM, Coyle JT, Herman MM, Hyde TM, Kleinman JE (2004) Glutamate carboxypeptidase II gene expression in the human frontal and temporal lobe in schizophrenia. Neuropsychopharmacology 29:117–125

    Google Scholar 

  • Gluck MR, Thomas RG, Haroutunian V (2002) Implications of altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry 159:1165–1173

    Google Scholar 

  • Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69:164–170

    Google Scholar 

  • Goff DC, Tsai G, Monoach DS, Flood J, Darby DG, Coyle JT (1996) d-Cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry 153:1628–1630

    CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Levitt J, Amico E, Monoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT (1999) A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 56:21–27

    Article  CAS  PubMed  Google Scholar 

  • Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 21:484–487

    Google Scholar 

  • Goff DC, Hennen J, Lyoo IK, Tsai G, Wald LL, Evins AE, Yurgelun-Todd DA, Renshaw PF (2002) Modulation of brain and serum glutamatergic concentrations following a switch from conventional neuroleptics to olanzapine. Biol Psychiatry 51:493–497

    Article  Google Scholar 

  • Golub MS, Germann SL, Lloyd KC (2004) Behavioral characteristics of a nervous system-specific erbB4 knock-out mouse. Behav Brain Res 153:159–170

    Google Scholar 

  • Gonzalez MI, Robinson MB (2004) Protein kinase C-dependent remodelling of glutamate transporter function. Mol Interv 4:48–58

    Google Scholar 

  • Grimwood S, Slater P, Deakin JFW (1999) NR2B-containing NMDA receptors are up-regulated in temporal cortex in schizophrenia. NeuroReport 10:461–465

    Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    CAS  PubMed  Google Scholar 

  • Gundersen V, Talgoy Holten A, Strom-Mathisen J (2004) GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission. Mol Cell Neurosci 26:156–165

    Google Scholar 

  • Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746–4751

    Google Scholar 

  • Haradahira T, Okauchi T, Maeda J, Zhang MR, Nishikawa T, Konn Suzuki K, Suhara T (2003) Effects of endogenous agonists, glycine and d-serine, on in vivo specific binding of [11C]L-703,717, a PET radioligand for the glycine-binding site of NMDA receptors. Synapse 50:130–136

    Google Scholar 

  • Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ, Law AJ, Eastwood SL (2003) Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann NY Acad Sci 1003:94–101

    Google Scholar 

  • Harsing LG, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, Tesolin-Decros B, Matyus P, Egyed A, Spedding M, Levay G (2003) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825

    Google Scholar 

  • Hashimoto A, Chiba Y (2004) Effect of systemic administration of d-serine on the levels of d- and l-serine in several brain areas and periphery of rat. Eur J Pharmacol 495:153–158

    Google Scholar 

  • Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia. Arch Gen Psychiatry 60:572–576

    Google Scholar 

  • Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR (2004) Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 9:299–307

    Google Scholar 

  • Hayashi T, Su TP, Kagaya A, Nishida A, Shimizu M, Yamawaki S (1999) Neuroleptics with differential affinities at dopamine D2 receptors and sigma receptors affect differently the NMDA-induced increase in intracellular calcium concentration: involvement of protein kinase. Synapse 31:20–28

    Google Scholar 

  • Hedou G, Mansuy IM (2003) Inducible molecular switches for the study of long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:797–804

    Google Scholar 

  • Heikkilä L, Rimon R, Terenius L (1990) Dynorphin A and substance P in the cerebrospinal fluid of schizophrenic patients. Psychiatry Res 34:229–236

    Google Scholar 

  • Helboe L, Egebjerg J, Moller M, Thomsen C (2003) Distribution and pharmacology of alanine–serine–cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18:2227–2238

    Google Scholar 

  • Heresco-Levy U (2000) NMDA receptor-based treatment approaches in schizophrenia: the first decade. Int J Neuropsychopharmacol 3:243–258

    Google Scholar 

  • Heresco-Levy U (2003) Glutamatergic neurotransmission modulation and the mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1113–1123

    Google Scholar 

  • Heresco-Levy U, Javitt DC (2004) Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 66:89–96

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Shimoni J (1998) Double-blind, placebo-controlled, crossover trial of d-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmacol 1:131–136

    Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 56:29–36

    Article  CAS  PubMed  Google Scholar 

  • Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC (2002) Placebo-controlled trial of d-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 159:480–482

    Article  PubMed  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55:165–171

    Google Scholar 

  • Higgins GA, Ballard TM, Huwyler J, Kemp JA, Gill R (2003) Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology 44:324–341

    Google Scholar 

  • Hosak L, Libiger J (2002) Antiepileptic drugs in schizophrenia: a review. Eur Psychiatry 17:371–378

    Google Scholar 

  • Humphries CR, Mortimer A, Hirsch SR (1996) NMDA receptor RNA correlation with antemortem cognitive impairment in schizophrenia. NeuroReport 7:2051–2055

    Google Scholar 

  • Husi H, Ward MA, Choudhary IS, Blackstock WP, Grant SGN (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Google Scholar 

  • Hynd MR, Scott HL, Dodd PR (2004) Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. J Neurochem 89:240–247

    Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ, Harountunian V, Davis KL, Meador-Woodruff JH (2000) Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry 157:1811–1823

    Article  Google Scholar 

  • Ichinohe A, Kure S, Mikawa S, Ueki T, Kojima K, Fujiwara K, Linuma K (2004) Glycine cleavage system in neurogenic regions. Eur J Neurosci 19:2365–2370

    Google Scholar 

  • Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM (1996) Subtype-selective inhibition of NMDA receptors by haloperidol. Mol Pharmacol 50:1541–1550

    Google Scholar 

  • Ishimaru M, Kurumaji A, Toru M (1994) Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 35:84–95

    Google Scholar 

  • Itokawa MK, Yamada K, Yoshitsugu K (2003) A microsatellite repeat in the promoter of the NMDA receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics 13:271–278

    Google Scholar 

  • Iwamoto T, Yamada Y, Hori K, Watanabe Y, Sobue K, Inui M (2004) Differential modulation of NR1–NR2A and NR1–NR2B subtypes of NMDA receptor by PDZ domain-containing proteins. J Neurochem 89:100–108

    Google Scholar 

  • Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472

    Google Scholar 

  • Jang MK, Mierke DF, Russek SJ, Farb DH (2004) A steroid modulatory domain on NR2B controls NMDA receptor proton sensitivity. Proc Natl Acad Sci U S A 101:8198–8203

    Google Scholar 

  • Jardemark KE, Ninan I, Liang X, Wang RY (2003) Protein kinase C is involved in clozapine’s facilitation of NMDA- and electrically evoked responses in pyramidal cells of the medial prefrontal cortex. Neuroscience 118:501–512

    Google Scholar 

  • Javitt DC (2002) Glycine modulators in schizophrenia. Curr Opin Investig Drugs 3:1067–1072

    Google Scholar 

  • Javitt DC, Frusciante M (1997) Glycyldodecylamide, a phencyclidine behavioral antagonist, blocks cortical glycine uptake: implications for schizophrenia and substance abuse. Psychopharmacology 129:96–98

    Google Scholar 

  • Javitt DC, Sershen H, Hashim A, Lajtha A (1997) Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 17:202–204

    Google Scholar 

  • Javitt DC, Balla A, Sershen H, Lajtha A (1999) Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 45:668–679

    Google Scholar 

  • Javitt DC, Sershen H, Hashim A, Lajtha A (2000) Inhibition of striatal dopamine release by glycine and glycyldodecylamide. Brain Res Bull 52:213–216

    Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4:385–391

    Google Scholar 

  • Javitt DC, Balla A, Sershen H (2002) A novel alanine-insensitive d-serine transporter in rat brain synaptosomal membranes. Brain Res 941:146–149

    Google Scholar 

  • Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H (2004a) Reversal of phencyclidine-induced dopaminergic dysregulation by NMDA receptor/glycine-site agonists. Neuropsychopharmacology 29:300–307

    Article  Google Scholar 

  • Javitt DC, Duncan L, Balla A, Sershen H (2004b) Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry, in press

  • Johannesen TS, Myhrer T (2002) Impaired visual memory in rats reared in isolation is reversed by d-cycloserine in the adult rat. Eur J Pharmacol 437:73–77

    Google Scholar 

  • Jones R, Laake K, Oeksengaard AR (2004) d-Cycloserine for Alzheimer’s disease (Cochrane review). In: The Cochrane Library, Issue 2. Wiley, Chichester, UK

    Google Scholar 

  • Johnson SA, Luu NT, Herbst TA, Knapp R, Lutz D, Arai A, Rogergs GA, Lynch G (1999) Synergistic interactions between ampakines and antipsychotic drugs. J Pharmacol Exp Ther 289:392–397

    Google Scholar 

  • Kadotani H, Hirano T, Masugi M, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Motor discoordination results from combined gene disruption of the NMDA receptor NR2A and NR2C subunits, but not from single disruption of the NR2A or NR2C subunit. J Neurosci 16:7859–7867

    Google Scholar 

  • Kanamori K, Ross BD (2004) Quantitative demonstration of extracellular glutamine concentrations in rat brain, and its elevation in vivo by system A transporter inhibitor, alpha-(methylamino)isobutyrate. J Neurochem 90:203–210

    Google Scholar 

  • Kane JM, Krystal J, Correll CU (2003) Treatment models and designs for intervention research during the psychotic prodrome. Schizophr Bull 29:747–756

    Google Scholar 

  • Kapur S, Seeman P (2002) NMDA receptor antagonists ketamine and PCP have direct effects on the dopamine D2 and serotonin 5-HT2 receptors—implications for models of schizophrenia. Mol Psychiatry 7:837–844

    CAS  PubMed  Google Scholar 

  • Kato K, Shishido T, Ono M, Shishido K, Kobayashi M, Niwa S (2001) Glycine reduces novelty- and methamphetamine-induced locomotor activity in neonatal ventral hippocampal damaged rats. Neuropsychopharmacolgy 24:330–332

    Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Google Scholar 

  • Kegeles LS, Martinez D, Kochan LD, Hwang DR, Huang Y, Mawlawi O, Suckow RF, Van Heertum DR, Laruelle M (2002) NMDA antagonist effects on striatal dopamine release: positron emission tomography studies in humans. Synapse 43:19–29

    Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueros DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4′-fluorophenyl)-3-(4″-phenylphnoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591

    Google Scholar 

  • Kloda A, Clements JD, Lewis RJ, Adams DJ (2004) Adenosine triphosphate acts as both a competitive antagonist and a positive allosteric modulator at recombinant NMDA receptors. Mol Pharmacol 65:1386–1396

    Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97:153–179

    Article  Google Scholar 

  • Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dehary D, Bernstein J, Bening-Abu-Shach U, Ben-Asher E, Lancet D, Ritsner M, Navon R (2004) Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 56:169–176

    Google Scholar 

  • Kretschmer BD (1998) Ligands of the NMDA receptor-associated glycine recognition site and motor behavior. Amino Acids 14:227–234

    Google Scholar 

  • Kretschmer BD, Koch M (1998) The ventral pallidum mediates disruption of prepulse inhibition of the acoustic startle response induced by dopamine agonists, but not by NMDA antagonists. Brain Res 798:204–210

    Google Scholar 

  • Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL (2002) Calcineurin acts via the C-terminus of NR2A to modulate desensitisation of NMDA receptors. Neuropharmacology 42:593–602

    Google Scholar 

  • Kumashiro S, Hashimoto A, Nishikawa T (1995) Free d-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseases. Brain Res 681:117–125

    Google Scholar 

  • Lahti AC, Weiler MA, Michaelidis T, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia from pathophysiology to treatment. Ann NY Acad Sci 1003:138–158

    Google Scholar 

  • Law AJ, Deakin JFW (2001) Asymmetrical reduction of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. NeuroReport 12:2971–2974

    Google Scholar 

  • Law AJ, Weickert S, Hyde TM, Kleinman JE, Harrison PJ (2004) Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience 127:125–136

    Google Scholar 

  • Lee J, Rajakumar N (2003) Role of NR2B-containing NMDA receptors in haloperidol-induced c-FOS in striatum and nucleus accumbens. Neuroscience 122:739–745

    Google Scholar 

  • Lees KR, Lavelle JF, Cunha L, Diener HC, Sanders EACM, Tack P, Wester P (2001) Glycine antagonist (GV150526) in acute stroke a multicentre, double-blind placebo-controlled phase II trial. Cerebrovasc Dis 11:20–29

    Google Scholar 

  • Leiderman E, Zylberman I, Zukin SR, Cooper TB, Javitt DC (1996) Preliminary investigation of high-dose oral glycine on serum levels and negative symptoms in schizophrenia: an open-label trial. Biol Psychiatry 39:213–215

    Google Scholar 

  • Le Pen G, Kew J, Alberati D, Borroni E, Heitz MP, Moreau JL (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    Google Scholar 

  • Leveque JC, Macias W, Rajadhyaksha A, Carlson RR, Barczak A, Kang S, Li XM, Coyle JT, Huganir RL, Heckers S, Konradi C (2000) Intracellular modulation of NMDA receptor function by antipsychotic drugs. J Neurosci 20:4011–4020

    Google Scholar 

  • Levine JB, Martin G, Wilson A, Treistman SN (2003) Clozapine inhibits isolated NMDA receptors expressed in Xenopus oocytes in a subunit specific manner. Neurosci Lett 346:125–128

    Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Google Scholar 

  • Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282

    Google Scholar 

  • Lipsky RH, Goldman D (2003) Genomics and variation of ionotropic glutamate receptors. Ann NY Acad Sci 1003:22–35

    Google Scholar 

  • Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    CAS  PubMed  Google Scholar 

  • Lowe DA, Emre M, Frey P, Kelly PH, Malanowski J, McAllister KH, Neijt HC, Rudeberg C, Urwyler S, White TG (1994) The pharmacology of SDZ EAA 494, a competitive NMDA antagonist. Neurochem Lett 25:583–600

    Google Scholar 

  • Mackenzie S, Erickson JD (2004) Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch 447:784–795

    Google Scholar 

  • Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101

    Google Scholar 

  • Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A (1997) Clozapine blunts NMDA antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 42:664–668

    Google Scholar 

  • Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47:217–225

    Google Scholar 

  • Marenco S, Egan MF, Goldberg TE, Knable MB, McClure RK, Winterer G, Weinberger DR (2002) Preliminary experience with an ampakine (CX516) as a single agent for the treatment of schizophrenia: a case series. Schizophr Res 57:221–226

    Article  Google Scholar 

  • Marino MJ, Conn PJ (2002) Direct and indirect modulation of the NMDA receptor: potential for the development of novel antipsychotic therapies. Curr Drug Targets 1:1–16

    Google Scholar 

  • Mathé JM, Nomikos GG, Schilström B, Svensson TH (1998) Non-NMDA excitatory amino acid receptors in the ventral tegmental area mediate systemic dizocilpine (MK-801) induced hyperlocomotion and dopamine release in the nucleus accumbens. J Neurosci Res 51:583–592

    Google Scholar 

  • Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ihimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358:123–126

    Google Scholar 

  • Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenia. Glia 49:451–455

    Google Scholar 

  • Meador-Woodruff JH, Healy DJ (2000) Glutamate receptor expression in schizophrenia brain. Brain Res Interactive 31:288–294

    Google Scholar 

  • Meador-Woodruff JH, Clinton SM, Beneyto M, McCullumsmith RE (2003) Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Ann NY Acad Sci 1003:75–93

    Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550

    Google Scholar 

  • Melone M, Gragina L, Conti F (2003) Clozapine-induced reduction of glutamate transport in the frontal cortex is not mediated by GLAST and EAAC1. Mol Psychiatry 8:12–13

    Google Scholar 

  • Meltzer LT, Christoffersen CL, Serpa KA (1997) Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 21:511–518

    Google Scholar 

  • Michel FJ, Trudeau LE (2000) Clozapine inhibits synaptic transmission at GABAergic synapses established ventral tegmental area neurones in culture. Neuropharmacology 39:1536–1543

    Google Scholar 

  • Millan MJ (2002) NMDA receptor-coupled GlycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Targets 1:191–213

    Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet JM, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A site for PCP-induced locomotion in the rat. Eur J Neurosci 11:4419–4432

    Google Scholar 

  • Millan MJ, Audinot V, Dekeyne A, Brocco M, Lestage P, Gobert A, Lacoste JM, Cordi A (2000) S18841, a novel, imidazolinone partial agonist at GlycineB receptors of potential utility for the treatment of psychotic disorders. Int J Psychopharmacol 3:S133

    Google Scholar 

  • Miller RF (2004) d-Serine as a glial modulator of nerve cells. Glia 47:275–283

    Google Scholar 

  • Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci U S A 100:8987–8992

    Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T (2001) Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptors ɛ1 subunit. J Neurosci 21:750–757

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Snouwaert JN, Koller BH, Moy SS, Lieberman JA, Duncan GE (2004) Amphetamine-induced fos is reduced in limbic cortical regions but not in the caudate or accumbens in a genetic model of NMDA receptor hypofunction. Neuropsychopharmacology:1–9

  • Miyatake R, Furukawa A, Suwaki H (2002) Identification of a novel variant of the human NR2B gene promoter regions and its possible association with schizophrenia. Mol Psychiatry 7:1101–1106

    Google Scholar 

  • Moghaddam B (2002) Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51:775–787

    CAS  PubMed  Google Scholar 

  • Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40:881–884

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann NY Acad Sci 1003:131–137

    Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  CAS  PubMed  Google Scholar 

  • Montana V, Ni Y, Sunjura V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  CAS  PubMed  Google Scholar 

  • Moretti L, Pentikäinen OT, Settimo L, Johnson MS (2004) Model structures of the NMDA receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. J Struct Biol 145:205–215

    Google Scholar 

  • Morgan CJA, Mofeez A, Brandner B, Bromley L, Curran HV (2004) Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 29:208–218

    Google Scholar 

  • Mothet JP, Parent AT, Wolosker H, Brady RO, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) d-Serine is an endogenous ligand for the glycine site of the NMDA receptor. Proc Natl Acad Sci U S A 97:4926–4931

    Google Scholar 

  • Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH (2004) Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Mol Brain Res 121:60–69

    Google Scholar 

  • Muir KW, Lees KR (1995) Clinical experience with excitatory amino acid antagonist drugs. Stroke 26:503–513

    Google Scholar 

  • Nakauchi J, Matsuo H, Kim DK, Goto A, Chairoungdua A, Cha SH, Inatomi J, Shiokawa Y, Yamaguchi K, Saito I, Endou H, Kanai Y (2000) Cloning and characterization of a human brain Na+-independent transporter for small neutral amino acids that transports d-serine with high affinity. Neurosci Lett 287:231–235

    Google Scholar 

  • Naudon L, Moreau I, Vaillend C, Jay TM (2004) Prefrontal cortex neurons express both dopamine D1 and NMDA-R1 receptors—a double immunofluorescence study. FENS FORUM, 414

  • Neale JH, Bzdega T, Wroblewska B (2000) N-Acetylaspartyl-glutamate: most abundant peptide neurotransmitter in mammalian central nervous system. J Neurochem 75:443–452

    Google Scholar 

  • Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3:748–755

    Google Scholar 

  • Ninan I, Jardemark KE, Liang X, Wang RY (2003a) Calcium/calmodulin-dependent kinase II is involved in the facilitating effect of clozapine on NMDA- and electrically evoked responses in the medial prefrontal cortical pyramidal cells. Synapse 47:285–294

    Google Scholar 

  • Ninan I, Jardemark KE, Wang RY (2003b) Olanzapine and clozapine but not haloperidol reverse subchronic phencyclidine-induced functional hyperactivity of NMDA receptors in pyramidal cells of the rat medial prefrontal cortex. Neuropharmacology 44:462–472

    Google Scholar 

  • Nong YI, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalisation. Nature 422:302–307

    Google Scholar 

  • Ohnuma T, Tessler G, Arai H, Faull RL, McKenna PJ, Emson PC (2000) Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Res Mol Brain Res 85:24–31

    Google Scholar 

  • Ohtsuki T, Sakurai K, Dou H, Toru M, Yamakawa-Kobayashi K, Arinami T (2001) Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia. Mol Psychiatry 6:211–216

    Google Scholar 

  • Olszewski RT, Bukhari N, Zhou J, Kozikowski AP, Wroblewski JT, Shamimi-Noori S, Wroblewska B, Bzdega T, Vicini S, Barton FB, Neale JH (2004) NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR. J Neurochem 89:876–885

    Google Scholar 

  • Oranje B, Gispen-de Wied CC, Verbaten MN, Kahn RS (2002) Modulating sensory gating in healthy volunteers: the effects of ketamine and haloperidol. Biol Psychiatry 52:557–895

    Google Scholar 

  • Ossowska K, Pietraszek M, Wardas J, Nowak G, Wolfarth S (1999) Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 359:280–287

    Google Scholar 

  • Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Google Scholar 

  • Paul IA, Skolnick P (2003) Glutamate and depression clinical and preclinical studies. Ann NY Acad Sci 1003:250–272

    Google Scholar 

  • Perry W, Light GA, Davis H, Braff DL (2000) Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests. Schizophr Res 46:167–174

    Google Scholar 

  • Popken GJ, Leggio MG (2002) Expression of mRNAs related to the GABAergic and glutamatergic neurotransmitter systems in the human thalamus: normal and schizophrenic. Thalamus Relat Syst 1:349–369

    Google Scholar 

  • Potkin SG, Jin Y, Bunney BG, Costa J, Gulasekaram B (1999) Effect of clozapine and adjunctive high-dose glycine in treatment-resistant schizophrenia. Am J Psychiatry 156:145–147

    CAS  PubMed  Google Scholar 

  • Pralong E, Magistretti P, Stoop R (2002) Cellular perspectives on the glutamate–monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol 67:173–202

    Google Scholar 

  • Przegalinski E, Siwanowicz J, Chojnacka-Wojcik E (1999) Lack of effect of a GlycineB receptor partial agonist on amphetamine-induced sensitisation in mice. Pol J Pharmacol 51:385–390

    Google Scholar 

  • Reisberg B, Doody R, Stöffler A (2003) Memantine in moderate to severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  Google Scholar 

  • Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H (2002) Glial transport of the neuromodulator d-serine. Brain Res 929:202–209

    Google Scholar 

  • Rivera A, Cuellar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartment of the striatum. J Neurochem 80:219–229

    Google Scholar 

  • Rodriguez JJ, Pickel VM (1999) Enhancement of NMDA immunoreactivity in residual dendritic spines in the caudate–putamen nucleus after chronic haloperidol administration. Synapse 33:289–303

    Google Scholar 

  • Rosse RB, Theut SK, Banay-Schwartz M, Leighton M, Scarcella E, Cohen CG, Deutsch SI (1989) Glycine adjuvant therapy to conventional neuroleptic treatment in schizophrenia an open-label, pilot study. Clin Neuropharmacol 12:416–424

    Google Scholar 

  • Rouaud T, Billard JM (2003) d-Cycloserine facilitates synaptic plasticity but impairs glutamate neurotransmission in rat hippocampus slices. Br J Pharmacol 140:1051–1056

    Google Scholar 

  • Rubin Y, La Placa MC, Smith DH, Thibault LE, Lenkinski RE (1995) The effect of N-acetylaspartate on the intracellular free calcium concentration in NTera2-neurons. Neurosci Lett 198:209–212

    Google Scholar 

  • Sakata Y, Owada Y, Sato K, Kojima K, Hisanaga K, Shinka T, Suzuki Y, Aoki Y, Satoh J, Kondo H, Matsubara Y, Kure S (2001) Structure and expression of the glycine cleavage system in rat central nervous system. Mol Brain Res 94:119–130

    Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-Serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    Google Scholar 

  • Schiffer HH (2002) Glutamate receptor genes. Mol Neurobiol 25:191–212

    Google Scholar 

  • Schiffer WK, Logan J, Dewey SL (2003) Positron emission tomography studies of potential mechanisms underlying phencyclidine-induced alterations in striatal dopamine. Neuropsychopharmacology 28:2192–2198

    Google Scholar 

  • Schmidt WJ, Kretschmer BD (1997) Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 21:381–392

    Google Scholar 

  • Schmidt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347:81–84

    Google Scholar 

  • Schneider J, Wade T, Lidsky T (1998) Chronic neuroleptic treatment alters expression of glial glutamate transporter GLT-1 Mma in the striatum. NeuroReport 9:133–136

    Google Scholar 

  • Schoepp DD, Marek GJ (2002) Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Targets CNS Neurol Disord 1:215–225

    Google Scholar 

  • Schroeder H, Greekseh G, Beeker A, Bogerts B, Hoellt V (1999) Alterations of the dopaminergic and glutamatergic neurotransmission in adult rats with postnatal ibotenic acid hippocampus lesion. Psychopharmacology 145:61–66

    Article  CAS  PubMed  Google Scholar 

  • Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M, Lere B, Rietschel M, Trixler M, Maier W, Wildenauer DB (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72:185–190

    Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Google Scholar 

  • Schwieler L, Erhardt S (2003) Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 28:1770–1777

    Google Scholar 

  • Schwieler L, Engberg G, Erhardt S (2004) Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 52:114–122

    Google Scholar 

  • Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2000) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 98:301–306

    Google Scholar 

  • Sebban C, Tesolin-Decros B, Ciprian-Ollivier J, Perret L, Spedding M (2002) Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, α1- and 5-HT2A-receptors. Br J Pharmacol 135:65–78

    Google Scholar 

  • See RE, Lynch AM (1996) Duration-dependent increase in striatal glutamate following prolonged fluphenazine administration in rats. Eur J Pharmacol 302:279–282

    Google Scholar 

  • Semple CAM, Devon RS, Le Hellard S, Porteous DJ (2001) Identification of genes from a schizophrenia-linked translocation breakpoint region. Genomics 73:123–126

    Google Scholar 

  • Serretti A, De Ronchi D, Lorenzi C, Barardi D (2004) New antipsychotics and schizophrenia: a review on efficacy and side effects. Curr Med Chem 11:343–358

    Google Scholar 

  • Sesack SR, Carr DB, Omelchenko N, Pinto A (2003) Anatomical substrates for glutamate–dopamine interactions. Ann NY Acad Sci 1003:36–52

    Google Scholar 

  • Sheinin A, Shavit S, Benveniste M (2001) Subunit specificity and mechanism of action of NMDA partial agonist d-cycloserine. Neuropharmacology 41:151–158

    Google Scholar 

  • Sherman AD, Davidson AT, Baruah S, Hegwood TS, Waziri B (1991) Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 121:77–80

    Google Scholar 

  • Shi WX, Zhang XX (2003) Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine. J Pharmacol Exp Ther 305:680–687

    Google Scholar 

  • Shoham S, Mazeh H, Javitt DC, Heresco-Levy U (2004) Glycine and d-cycloserine attenuate vacuous chewing movements in a rat model of tardive dyskinesia. Brain Res 1004:142–147

    Google Scholar 

  • Smith RE, Haroutunian V (2001a) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    Article  Google Scholar 

  • Smith RE, Haroutunian V (2001b) Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. NeuroReport 12:1–3

    Google Scholar 

  • Speno HS, Luthi-Carter R, Macias WL, Valentine SL, Joshi ART, Coyle JT (1999) Site-directed mutagenesis of predicted active site residues in glutamate carboxypeptidase II. Mol Pharmacol 55:179–185

    Google Scholar 

  • Spooren W, Mombereau C, Maco M, Gill R, Kemp JA, Ozmen L, Nakanishi S, Higgins GA (2004) Pharmacological and genetic evidence indicates that combined inhibition of NR2A and NR2B subunit containing NMDA receptors is required to disrupt prepulse inhibition. Psychopharmacology 175:99–105

    Google Scholar 

  • Squires RF, Saederup E (1998) Clozapine and several other antipsychotic/antidepressant drugs preferentially block the same core fraction of GABA(A) receptors. Neurochem Res 23:1283–1290

    Google Scholar 

  • Stefansson H, Sigurdsson E, Steinhorsdottir V, Bjornsdottir S, Sigmundsson T, Stefansson K (2002) Neuregulin1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    Article  Google Scholar 

  • Stefansson H, Setinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K (2004) Neuregulin1 and schizophrenia. Ann Med 36:62–71

    Google Scholar 

  • Stefensen SC, Svingos AL, Pickel VM, Henriksen SJ (1998) Electrophysiological characterization of GABAergic neurons in ventral tegmental area. J Neurosci 18:8003–8015

    Google Scholar 

  • Steinpreis RE (1996) The behavioural and neurochemical effects of phencyclidine in humans and animals: some implications for modelling psychosis. Behav Brain Res 74:45–55

    Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Google Scholar 

  • Stouffer EM, Petri HL, Devan BD (2004) Effect of d-serine on a delayed match-to-place task for the water maze. Behav Brain Res 152:447–452

    Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O’Neill FA, Walsh D, Kendler KS (2002) Genetic variation in 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348

    Google Scholar 

  • Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY (2004) Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropharmacol 7:1–8

    Google Scholar 

  • Sur C, Mallorga PJ, Wittmann M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn PJ (2003) N-Desmethylclozapine, a novel allosteric agonist at muscarinic1 receptor potentiates NMDA receptor activity. Proc Natl Acad Sci U S A 100:13674–13679

    Google Scholar 

  • Takahata R, Moghaddam B (2003) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28:1117–1124

    Google Scholar 

  • Tamminga CA, Lahti AC, Mefoff DR, Gao XM, Holcomg HH (2003) Evaluating glutamatergic transmission in schizophrenia. Ann NY Acad Sci 1003:113–118

    Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  CAS  PubMed  Google Scholar 

  • Tanii Y, Nishikawa T, Hashimoto A, Takahashi K (1994) Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Ther 269:1040–1048

    Google Scholar 

  • Tarazi FI, Baldessarini RJ, Kula NS, Zhang H (2003) Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: implications for antipsychotic drug treatment. J Pharmacol Exp Ther 306:1145–1151

    Google Scholar 

  • Terada T, Inui K (2004) Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab 5:85–94

    CAS  PubMed  Google Scholar 

  • Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946

    Article  Google Scholar 

  • Théberge J, Al-Semann Y, Williamson PC, Menon RS, Neufeld RWJ, Rajakumar N, Schaefer B, Densmore M, Drost DJ (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160:2231–2233

    Article  Google Scholar 

  • Tibbo P, Hanstock C, Valiakalayil A, Allen P (2004) 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 161:1116–1118

    Article  Google Scholar 

  • Tiihonen J, Hallikainen T, Ryynänen OP, Repo-Tiihonen E, Kotilainen I, Eronen M, Toivonen P, Wahlbeck K, Putkonen A (2003) Lamotrigine in treatment-resistant schizophrenia: a randomized placebo-controlled crossover trial. Biol Psychiatry 54:1241–1248

    Article  Google Scholar 

  • Toth E, Lajtha A (1986) Antagonism of phencyclidine induced hyperactivity by glycine in mice. Neurochem Res 11:393–400

    Google Scholar 

  • Trudeau LE (2004) Glutamate co-transmission as an emerging concept in monoamine neuron function. Rev Psychiatr Neurosci 29:296–310

    Google Scholar 

  • Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman JE, Coyle JT (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brain. Arch Gen Psychiatry 52:829–836

    Google Scholar 

  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT (1998) d-Serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT (1999) d-Serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 156:1822–1825

    CAS  PubMed  Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lang N (2004a) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 55:452–456

    Google Scholar 

  • Tsai G, Ralph-Williams RJ, Martina M, Bergeron R, Berger-Sweeney J, Dunham KS, Jiang Z, Caine SB, Coyle JT (2004b) Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci U S A 101:8485–8490

    Google Scholar 

  • Tseng KY, O’Donnell P (2004) Dopamine–glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signalling mechanisms. J Neurosci 24:5131–5139

    Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2005) Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res 72:225–234

    Google Scholar 

  • Turecek R, Vlcek K, Petrovic M, Horak M, Vlachova V, Vyklicky L (2004) Intracellular spermine decreases open probability of NMDA receptors. Neuroscience 125:879–887

    Google Scholar 

  • Urai Y, Jinnouchi O, Kwak KT, Suzue A, Nagahiro S, Fukui K (2002) Gene expression of d-amino acid oxidase in cultured rat astrocytes regional and cell type specific expression. Neurosci Lett 324:101–104

    Google Scholar 

  • Vaillend C, Ungerer A, Billard JM (1999) Facilitated NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 area of dystrophin-deficient mice. Synapse 33:59–70

    Google Scholar 

  • Van Berckel BNM (2003) Glutamate and schizophrenia. Curr Neuropharmacol 1:351–370

    Google Scholar 

  • Van der Heijden FMMA, Tuinier S, Fekkes D, Sijben AES, Kahn RS, Verhoenven WMA (2004) Atypical antipsychotics and the relevance of glutamate and serotonin. Eur Neuropsychopharmacol 14:259–265

    Google Scholar 

  • Ventriglia M, Bocchi Chiavetto L, Bonvicini C, Tura GB, Bignotti S, Racagni G, Gennarelli M (2002) Allelic variation in the human prodynorphin gene promoter and schizophrenia. Neuropsychobiology 46:17–21

    Google Scholar 

  • Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant NMDA receptors. J Neurophysiol 79:555–566

    Google Scholar 

  • Vieira AR, Devlin AM (2004) Glutamate carboxipeptidase II (GCPII) His475Tyr polymorphism and association studies. Am J Med Gen 130A:329–330

    Google Scholar 

  • Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61:544–555

    Google Scholar 

  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, Smith TT, Mohell N, Harvey SC, Lameh J, Nash N, Vanover KE, Olsson R, Jayathilake K, Lee M, Levey AI, Hacksell U, Burstein ES, Davis RE, Brann MR (2004) The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177:207–216

    Google Scholar 

  • Williams NM, Bowen T, Spurlock G, Norton N, Williams HJ, Hoogendoom B, Owen MJ, O’Donovan MC (2002) Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the NMDA glutamate receptor. Mol Psychiatry 7:508–514

    Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O’Donovan MD, Owen MJ (2003) Support for genetic variation in neuregulin1 and susceptibility to schizophrenia. Mol Psychiatry 8:485–487

    Google Scholar 

  • Williams JB, Mallorga PJ, Conn PJ, Pettibone DJ, Sur C (2004) Effects of typical and atypical antipsychotics on human glycine transporters. Schizophr Res 71:103–112

    Google Scholar 

  • Winter JC, Eckler JR, Rabin RA (2003) Serotonergic/glutamatergic interactions: the effects of mGlu (2/3) receptor ligands in rats trained with LSD and PCP as discriminative stimuli. Psychopharmacology 172:233–240

    Google Scholar 

  • Wollemann M, Benyhe S (2004) Non-opioid actions of opioid peptides. Life Sci 75:257–270

    Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate–N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    Google Scholar 

  • Woo TUW, Walsh JP, Benes FM (2004) Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-d-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry 61:649–657

    Google Scholar 

  • Xia M, Liu Y, Figueroa DJ, Chiu CS, Wei N, Lawlor AM, Lu P, Sur C, Koblan KS, Connolly TM (2004) Characterization and localization of a human serine racemase. Mol Brain Res 125:96–104

    Google Scholar 

  • Yamakura T, Shimoh K (1999) Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 59:279–298

    Google Scholar 

  • Yamamoto BK, Pehek EA, Meltzer HY (1994) Brain region effects of clozapine on amino acid and monoamine transmission. J Clin Psychiatry 55:8–14

    PubMed  Google Scholar 

  • Yan HD, Ishihara K, Serikawa T, Sasa M (2003) Activation by N-acetyl-l-aspartate of acutely dissociated hippocampal neurons in rats via metabotropic glutamate receptors. Epilepsia 44:1153–1159

    Google Scholar 

  • Yanahashi S, Hashimoto K, Hattori K, Yuasa S, Iyo M (2004) Role of NMDA receptor subtypes in the induction of catalepsy and increase in Fos protein expression after administration of haloperidol. Brain Res 1011:84–93

    Google Scholar 

  • Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL, Zhou M, Zhang HY, Kong QM, Liu C, Zhang DR, Yu YQ, Liu SZ, Ju GZ, Shu L, Ma DL, Zhang D (2003) Association study of neuregulin1 gene with schizophrenia. Mol Psychiatry 8:706–709

    Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    Google Scholar 

  • Yu B, Wang C, Liu L, Johnson KM, Gallagher JP (2002) Adaptation to chronic PCP results in hyperfunctional NMDA and hypofunctional GABAA synaptic receptors. Neuroscience 113:1–10

    Google Scholar 

  • Zavitsanou K, Ward PB, Huang XF (2002) Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology 27:826–833

    Google Scholar 

Download references

Acknowledgements

M. Soubeyran is thanked for secretarial assistance, J.-P. Mothet for helpful comments on the manuscript, B. Di Cara for graphics and A. Cordi for assistance with chemical structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Millan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millan, M.J. N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology 179, 30–53 (2005). https://doi.org/10.1007/s00213-005-2199-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2199-1

Keywords

Navigation