Skip to main content
Log in

Atypical anxiolytic-like response to naloxone in benzodiazepine-resistant 129S2/SvHsd mice: role of opioid receptor subtypes

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Mice of many 129 substrains respond to environmental novelty with behavioural suppression and high levels of anxiety-like behaviour. Although resistant to conventional anxiolytics, this behavioural phenotype may involve stress-induced release of endogenous opioids.

Objectives

To assess the effects of opioid receptor blockade on behavioural reactions to novelty stress in a chlordiazepoxide-resistant 129 substrain.

Materials and methods

Experiment 1 contrasted the effects of the broad-spectrum opioid receptor antagonist naloxone (1.0–10.0 mg/kg) in C57BL/6JOlaHsd and 129S2/SvHsd mice exposed to the elevated plus-maze. Experiments 2–4 examined the responses of 129S2/SvHsd mice to the μ-selective opioid receptor antagonist β-funaltrexamine (2.5–10.0 mg/kg), the δ-selective antagonist naltrindole (2.5–10.0 mg/kg) and the κ-selective antagonist nor-binaltorphimine (2.5–5.0 mg/kg).

Results

129 mice displayed higher levels of anxiety-like behaviour and lower levels of general exploration relative to their C57 counterparts. Although naloxone failed to alter the behaviour of C57 mice, both doses of this antagonist produced behaviourally selective reductions in open-arm avoidance in 129 mice. Surprisingly, none of the more selective opioid receptor antagonists replicated this effect of naloxone: β-funaltrexamine was devoid of behavioural activity, naltrindole suppressed rearing (all doses) and increased immobility (10 mg/kg), while nor-binaltorphimine (5 mg/kg) nonspecifically increased percent open arm entries.

Conclusions

Recent evidence suggests differential involvement of opioid receptor subtypes in the anxiolytic efficacy of diverse compounds including conventional benzodiazepines. The insensitivity of 129 mice to the anxiolytic action of chlordiazepoxide, coupled with their atypical anxiolytic response to naloxone (but not more selective opioid receptor antagonists), suggests an abnormality in anxiety-related neurocircuitry involving opioid-GABA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agmo A, Belzung C (1998) The role of subtypes of the opioid receptor in the anxiolytic action of chlordiazepoxide. Neuropharmacology 37:223–232

    Article  PubMed  CAS  Google Scholar 

  • Agmo A, Galvan A, Heredia A, Morales M (1995) Naloxone blocks the antianxiety but not the motor effects of benzodiazepines and pentobarbital: experimental studies and literature review. Psychopharmacology 120:186–194

    Article  PubMed  CAS  Google Scholar 

  • Agmo A, Belzung C, Deloire X, Grassin M, Lewis S (1999) Blockade of anxiolytic-like actions of chlordiazepoxide by naloxone in the elevated plus-maze: comparisons between Swiss, C57BL/6 and BALB/c mice. Psychobiology 27:105–113

    CAS  Google Scholar 

  • Anisman H, Hayley S, Kelly O, Borowski T, Merlai Z (2001) Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: mouse strain-dependent outcomes. Behav Neurosci 115:443–454

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DS, Anderson IM, Nutt DJ, Bandelow B, Bond A, Davidson JRT, den Boer JA, Fineberg NA, Knapp M, Scott J, Wittchen H-U (2005) Evidence-based guidelines for the pharmacological treatment of anxiety disorders: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 19:567–596

    Article  PubMed  CAS  Google Scholar 

  • Balerio GN, Aso E, Maldonado R (2005) Involvement of the opioid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology 181:260–269

    Article  PubMed  CAS  Google Scholar 

  • Baran A, Shuster L, Eleftheriou BE, Bailey DW (1975) Opiate receptor binding in mice: genetic differences. Life Sci 17:633–638

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Agmo A (1997a) Naloxone blocks anxiolytic-like effects of benzodiazepines in Swiss but not BALB/c mice. Psychopharmacology 132:195–201

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Agmo A (1997b) Naloxone potentiates the effects of subeffective doses of anxiolytic agents in mice. Eur J Pharmacol 323:133–136

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Barreau S, Agmo A (2000) Naloxone potentiates anxiolytic-like actions of diazepam, pentobarbital and meprobamate but not those of Ro19-8022 in the rat. Eur J Pharmacol 394:289–294

    Article  PubMed  CAS  Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  PubMed  CAS  Google Scholar 

  • Berrendero F, Maldonado R (2002) Involvement of the opioid system in the anxiolytic-like effects induced by Δ9-tetrahydrocannabinol. Psychopharmacology 163:111–117

    Article  PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Racz I, Michel K, Zimmer A, Klingmuller D, Zimmer A (2004) Behavioral phenotype of pre-proenkephalin-deficient mice on diverse genetic backgrounds. Psychopharmacology 176:343–352

    Article  PubMed  CAS  Google Scholar 

  • Bolivar VJ, Caldarone BJ, Reilly AA, Flaherty L (2000) Habituation of activity in an open field: a survey of inbred strains and F1 hybrids. Behav Genet 30:285–293

    Article  PubMed  CAS  Google Scholar 

  • Bouwknecht JA, Paylor RE (2002) Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Brain Res 136:489–501

    Article  PubMed  Google Scholar 

  • Bouwknecht JA, van der Gugten J, Groenink L, Olivier B, Paylor RE (2004) Behavioral and physiological mouse models for anxiety: effects of flesinoxan in 129S6/SvEvTac and C57BL/6J mice. Eur J Pharmacol 494:45–53

    Article  CAS  Google Scholar 

  • Carter TA, Del Rio JA, Greenhall JA, Latronica ML, Lockhart DJ, Barlow C (2001) Chipping away at complex behavior: transcriptome/phenotype correlations in the mouse brain. Physiol Behav 73:849–857

    Article  PubMed  CAS  Google Scholar 

  • Clement Y, Calatayud F, Belzung C (2002) Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull 57:57–71

    Article  PubMed  Google Scholar 

  • Cohen GA, Doze VA, Madison DV (1992) Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons. Neuron 9:325–335

    Article  PubMed  CAS  Google Scholar 

  • Contet C, Rawlins JNP, Deacon RMJ (2001) A comparison of 129S2/SvHsd and C57BL/6JOlaHsd mice on a test battery assessing sensorimotor, affective and cognitive behaviours: implications for the study of genetically modified mice. Behav Brain Res 124:33–46

    Article  PubMed  CAS  Google Scholar 

  • Cook MN, Bolivar VJ, McFadyen MP, Flaherty L (2002) Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav Neurosci 116:600–611

    Article  PubMed  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN (2000). What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. Wiley-Liss, New York

    Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132:107–124

    Article  PubMed  CAS  Google Scholar 

  • Endoh T, Matsuura H, Tanaka C, Nagase H (1992) Nor-binaltorphimine: a potent and selective κ-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther 316:30–42

    PubMed  CAS  Google Scholar 

  • Filliol D, Ghozland S, Chluba J, Martin M, Matthes HWD, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer B (2000) Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 25:195–200

    Article  PubMed  CAS  Google Scholar 

  • Frussa-Filho R, Barbosa-Junior H, Silva RH, Da Cunha C, Mello CF (1999) Naltrexone potentiates the anxiolytic effects of chlordiazepoxide in rats exposed to novel environments. Psychopharmacology 147:168–173

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the genetic background? Trends Neurosci 19:177–178

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (2001) Gene targeting: technical confounds and potential solutions in behavioral brain research. Behav Brain Res 125:13–21

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A (1987) Binding selectivity profiles for ligands of multiple receptor types: focus on opioid receptors. Trends Pharmacol Sci 8:456–460

    Article  CAS  Google Scholar 

  • Griebel G, Belzung C, Perrault G, Sanger DJ (2000) Differences in anxiety-related behaviors and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology 148:164–170

    Article  PubMed  CAS  Google Scholar 

  • Holmes A (2001) Targeted gene mutation approaches to the study of anxiety-like behavior in mice. Neurosci Biobehav Rev 25:261–273

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav 1:55–69

    Article  PubMed  CAS  Google Scholar 

  • Homanics GE, Quinlan JJ, Firestone LL (1999) Pharmacologic and behavioral responses of inbred C57BL/6J and strain 129/SvJ mouse lines. Pharmacol Biochem Behav 63:21–26

    Article  PubMed  CAS  Google Scholar 

  • Kachaturian H, Lewis ME, Schafer MK-H, Watson SJ (1985) Anatomy of the CNS opioid systems. Trends Neurosci 8:111–119

    Article  Google Scholar 

  • Kang W, Wilson SP, Wilson MA (1999) Overexpression of proenkephalin in the amygdala potentiates the anxiolytic effects of benzodiazepines. Neuropsychopharmacology 22:77–88

    Article  Google Scholar 

  • Kieffer BL, Gaveriaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66:285–306

    Article  PubMed  CAS  Google Scholar 

  • Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, Zimmer AE (1996) Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383:535–538

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Rodgers RJ (1990) Antinociceptive effects of elevated plus-maze exposure: influence of opiate receptor manipulations. Psychopharmacology 102:507–513

    Article  PubMed  CAS  Google Scholar 

  • Logue SF, Owen EH, Rasmussen DL, Wehner JM (1997) Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience 80:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29

    Article  PubMed  CAS  Google Scholar 

  • Marco EM, Llorente R, Perez-Alvarez L, Moreno E, Guaza C, Viveros MP (2005) The κ-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety. Behav Brain Res 163:212–218

    Article  PubMed  CAS  Google Scholar 

  • Marin S, Marco E, Biscaia M, Fernandez B, Rubio M, Guaza C, Schmidhammer H, Viveros MP (2003) Involvement of the κ-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats. Pharmacol Biochem Behav 74:649–656

    Article  PubMed  CAS  Google Scholar 

  • Mas Nieto M, Guen SLE, Kieffer BL, Roques BP, Noble F (2005) Physiological control of emotion-related behaviors by endogenous enkephalins involves essentially the delta opioid receptors. Neuroscience 135:305–313

    Article  PubMed  CAS  Google Scholar 

  • McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73:705–717

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Thompson ML (1984) Analgesia resulting from defeat in a social confrontation: the role of endogenous opioids in brain. In: Bandler RJ (ed) Modulation of sensorimotor activity during altered behavioral states. AR Liss, New York, pp 431–456

    Google Scholar 

  • Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Wilson SG (1997) Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6J inbred mouse strains: implications for transgenic knock-out studies. Eur J Pain 1:293–297

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, Elmer GI, Chung JM, Devor M (1999) Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67–82

    Article  PubMed  CAS  Google Scholar 

  • Muraki T, Oike N, Shibata Y, Nomoto T (1991) Analgesia effects of μ- and κ-opioid agonists in beige and CXBK mice. J Pharm Pharmacol 43:210–212

    PubMed  CAS  Google Scholar 

  • Nelson RJ, Young KA (1998) Behavior in mice with targeted disruption of single genes. Neurosci Biobehav Rev 22:453–462

    Article  PubMed  CAS  Google Scholar 

  • Ohl F (2005) Animal models of anxiety. In: Handbook of experimental pharmacology (Anxiety and anxiolytic drugs), vol 169, pp 35–69

  • Oliverio A, Castellano C (1974) Genotype-dependent sensitivity and tolerance to morphine and heroin: dissociation between opiate-induced running and analgesia in the mouse. Psychopharmacologia 39:13–22

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Duwala SC, Ralph RJ, Mark AG (1999) Behavioral organization is independent of locomotor activity in 129 and C57 mouse strains. Brain Res 835:27–36

    Article  PubMed  CAS  Google Scholar 

  • Pert A, DeWald A, Liao H, Sivit C (1979) Effects of opiates and opioid peptides on motor behaviors: sites and mechanisms of action. In: Usdin E, Bunney WE, Kline NS (eds) Endorphins in mental health research. MacMillian, London, pp 45–61

    Google Scholar 

  • Phillips TJ, Hen R, Crabbe JC (1999) Complications associated with genetic background effects in research using knockout mice. Psychopharmacology 147:5–7

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Lipowski AW, Takemori AE (1987) Bi-naltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists. Life Sci 40:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol 146:185–186

    Article  PubMed  CAS  Google Scholar 

  • Privette TH, Terrian DM (1995) Kappa opioid agonists produce anxiolytic-like behavior on the elevated plus-maze. Psychopharmacology 118:444–450

    Article  PubMed  CAS  Google Scholar 

  • Ragnauth A, Schuller AGP, Morgan M, Chan J, Ogawa S, Pintar J, Bodnar RJ, Pfaff DW (2001) Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci U S A 98:1958–1963

    Article  PubMed  CAS  Google Scholar 

  • Reggiani A, Battaini F, Kobayashi H, Spano P, Trabucchi M (1980) Genotype-dependent sensitivity to morphine: role of different opiate receptor populations. Brain Res 189:289–294

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ (1997) Animal models of ‘anxiety’: where next? Behav Pharmacol 8:477–496

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ (2001) Anxious genes, emerging themes. Behav Pharmacol 12:471–476

    PubMed  CAS  Google Scholar 

  • Rodgers RJ, Randall JI (1988) Environmentally induced analgesia: situational factors, mechanisms and significance. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, Chichester, pp 107–142

    Google Scholar 

  • Rodgers RJ, Boullier E, Chatzimichalaki P, Cooper GD, Shorten A (2002a) Contrasting phenotypes of C57BL/6JOlaHsd, 129S2/SvHsd and 129/SvEv mice in two exploration-based tests of anxiety-related behaviour. Physiol Behav 77:301–310

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Davies B, Shore R (2002b) Absence of anxiolytic response to chlordiazepoxide in two common background strains exposed to the elevated plus-maze: importance and implications of behavioural baseline. Genes Brain Behav 1:242–251

    Article  PubMed  CAS  Google Scholar 

  • Rodgers RJ, Evans PM, Murphy A (2005) Anxiogenic profile of AM-251, a selective cannabinoid CB1 receptor antagonist, in plus-maze-naïve and plus-maze-experienced mice. Behav Pharmacol 16:405–413

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Jones DNC, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105:207–217

    Article  PubMed  CAS  Google Scholar 

  • Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J (2004) Potential anxiolytic and antidepressant-like activities of SNC80, a selective δ-opioid agonist, in behavioral models in rodents. J Pharm Sci 95:374–380

    Article  CAS  Google Scholar 

  • Sasaki K, Fan L-W, Tien L-T, Ma T, Loh HH, Ho IK (2002) The interaction of morphine and γ-aminobutyric acid (GABA)ergic systems in anxiolytic behavior: using μ-opioid receptor knockout mice. Brain Res Bull 57:689–694

    Article  PubMed  CAS  Google Scholar 

  • Silva RH, Frussa-Filho R (2002) Naltrexone potentiates both amnestic and anxiolytic effects of chlordiazepoxide in mice. Life Sci 72:721–730

    Article  PubMed  CAS  Google Scholar 

  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature genetics 16:19–27

    Article  PubMed  CAS  Google Scholar 

  • Sugita S, North RA (1993) Opioid actions on neurons of lateral amygdala in vivo. Brain Res 612:151–155

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Sanford LD (2005) Home cage activity and activity-based measures of anxiety in 129P3/J, 129X1/SvJ and C57BL/6J mice. Physiol Behav 84:105–115

    Article  PubMed  CAS  Google Scholar 

  • Tarantino LM, Gould TJ, Druham JP, Bucan M (2000) Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm Genome 11:555–564

    Article  PubMed  CAS  Google Scholar 

  • Thompson WR (1953) The inheritance of behavior: behavioral differences in fifteen mouse strains. Can J Psychol 7:145–155

    PubMed  CAS  Google Scholar 

  • Treit D, Menard J, Royan C (1993) Anxiogenic stimuli in the elevated plus-maze. Pharmacol Biochem Behav 44:463–469

    Article  PubMed  CAS  Google Scholar 

  • Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111:323–331

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Suzuki T, Misawa M, Nagase H (1996) Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 307:7–14

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino AL, Plamondon H, Melzack R (1992) Analgesic and aversive effects of naloxone in BALB/c mice. Exp Neurol 117:216–218

    Article  PubMed  CAS  Google Scholar 

  • van Abeelen JHF, van Heuvel CM (1982) Behavioural responses to novelty in two inbred mouse strains after intrahippocampal naloxone and morphine. Behav Brain Res 5:199–207

    Article  PubMed  Google Scholar 

  • van Abeelen JHF, van Nies JHM (1983) Effects of intrahippocampally injected naloxone and morphine upon behavioural responses to novelty in mice from two selectively bred lines. Psychopharmacology 81:232–235

    Article  PubMed  Google Scholar 

  • van Gaalen MM, Steckler T (2000) Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res 115:95–106

    Article  PubMed  Google Scholar 

  • Voikar V, Koks S, Vasar E, Rauvala H (2001) Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 72:271–281

    Article  PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  • Weiss SM (1995) Pharmacological and behavioural examination of the defensive reactions of laboratory mice to the calls of the Tawny Owl. Ph.D. Thesis, University of Leeds

Download references

Acknowledgement

The authors are grateful to Professor Jorgen Scheel-Kruger (Neurosearch A/S, Copenhagen) for insightful comments that stimulated the present series of experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Rodgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgers, R.J., Augar, R., Berryman, N. et al. Atypical anxiolytic-like response to naloxone in benzodiazepine-resistant 129S2/SvHsd mice: role of opioid receptor subtypes. Psychopharmacology 187, 345–355 (2006). https://doi.org/10.1007/s00213-006-0435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0435-y

Keywords

Navigation