Skip to main content
Log in

Effects of chronic delta-opioid receptor agonist on the excitability of hippocampal glutamate and brainstem monoamine neurons, anxiety, locomotion, and habituation in rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Short-term treatment with non-peptide agonists of delta-opioid receptors, such as agonist SNC80, induced behavioral effects in rodents, which could be modulated via changes in central neurotransmission. The present experiments aimed at testing the hypothesis that chronic treatment with SNC80 induces anxiolytic effects associated with changes in hippocampal glutamate and brainstem monoamine pathways.

Methods

Adult male Wistar rats were used in experiments. Rats were treated with SNC80 (3 mg/kg/day) for fourteen days. Neuronal excitability was assessed using extracellular in vivo single-unit electrophysiology. The behavioral parameters were examined using the elevated plus maze and open field tests.

Results

Chronic SNC80 treatment increased the excitability of hippocampal glutamate and ventral tegmental area dopamine neurons and had no effect on the firing activity of dorsal raphe nucleus serotonin cells. Chronic SNC80 treatment induced anxiolytic effects, which were, however, confounded by increased locomotor activity clearly confirmed in an open field test. The ability to cope with stressful situations and habituation processes in a novel environment was not influenced by chronic treatment with SNC80.

Conclusion

Our study suggests that the psychoactive effects of SNC80 might be explained by its ability to stimulate hippocampal glutamate and mesolimbic dopamine transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Original experimental data are available upon request.

Abbreviations

SNC80:

( +)-4-[(Alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide

DPDPE:

(D-Pen2,5)-enkephalin

RM ANOVA:

Analysis of variance for repeated measures

CA1/3:

Cornu Ammonis 1/3

DOR:

Delta-opioid receptor

DRN:

Dorsal raphe nucleus

EPM:

Elevated plus maze

HD:

Head dipping

HCl:

Hydrochloric acid

5-HT:

Serotonin

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

SAP:

Stretch attend postures

VTA:

Ventral tegmental area

References

  1. Veening JG, Gerrits PO, Barendregt HP. Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS. 2012;9:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bodnar RJ. Endogenous opiates and behavior: 2016. Peptides. 2018;101:167–212.

    Article  CAS  PubMed  Google Scholar 

  3. Chu Sin Chung P, Kieffer BL. Delta opioid receptors in brain function and diseases. Pharmacol Ther. 2013;140:112–20.

    Article  CAS  PubMed  Google Scholar 

  4. Calderon SN, Rothman RB, Porreca F, Flippen-Anderson JL, McNutt RW, Xu H, et al. Probes for narcotic receptor mediated phenomena. 19. Synthesis of (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3- methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide delta opioid receptor agonist. J Med Chem. 1994;37:2125–8.

    Article  CAS  PubMed  Google Scholar 

  5. Saitoh A, Kimura Y, Suzuki T, Kawai K, Nagase H, Kamei J. Potential anxiolytic and antidepressant-like activities of SNC80, a selective delta-opioid agonist, in behavioral models in rodents. J Pharmacol Sci. 2004;95:374–80.

    Article  CAS  PubMed  Google Scholar 

  6. Saitoh A, Yoshikawa Y, Onodera K, Kamei J. Role of delta-opioid receptor subtypes in anxiety-related behaviors in the elevated plus-maze in rats. Psychopharmacology. 2005;182:327–34.

    Article  CAS  PubMed  Google Scholar 

  7. Jutkiewicz EM, Rice KC, Woods JH, Winsauer PJ. Effects of the delta-opioid receptor agonist SNC80 on learning relative to its antidepressant-like effects in rats. Behav Pharmacol. 2003;14:509–16.

    Article  CAS  PubMed  Google Scholar 

  8. Jutkiewicz EM, Rice KC, Traynor JR, Woods JH. Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology. 2005;182:588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saitoh A, Yamada M, Yamada M, Takahashi K, Yamaguchi K, Murasawa H, et al. Antidepressant-like effects of the delta-opioid receptor agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-me thoxyphenyl)methyl]-N, N-diethylbenzamide) in an olfactory bulbectomized rat model. Brain Res. 2008;1208:160–9.

    Article  CAS  PubMed  Google Scholar 

  10. Moravcikova L, Moravcik R, Jezova D, Lacinova L, Dremencov E. Delta-opioid receptor-mediated modulation of excitability of individual hippocampal neurons: mechanisms involved. Pharmacol Rep. 2021;73:85–101.

    Article  CAS  PubMed  Google Scholar 

  11. Hlavacova N, Li Y, Pehrson A, Sanchez C, Bermudez I, Csanova A, et al. Effects of vortioxetine on biomarkers associated with glutamatergic activity in an SSRI insensitive model of depression in female rats. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:332–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sakamoto K, Yamada D, Yamanaka N, Nishida M, Iio K, Nagase H, et al. A selective delta opioid receptor agonist SNC80, but not KNT-127, induced tremor-like behaviors via hippocampal glutamatergic system in mice. Brain Res. 2021;1757: 147297.

    Article  CAS  PubMed  Google Scholar 

  13. Dremencov E, Gur E, Lerer B, Newman ME. Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:729–39.

    Article  CAS  PubMed  Google Scholar 

  14. Grinchii D, Dremencov E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int J Mol Sci. 2020;21:9532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Douma EH, de Kloet ER. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev. 2020;108:48–77.

    Article  CAS  PubMed  Google Scholar 

  16. Bosse KE, Jutkiewicz EM, Gnegy ME, Traynor JR. The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum. Neuropharmacology. 2008;55:755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Homberg JR, Adan RAH, Alenina N, Asiminas A, Bader M, Beckers T, et al. The continued need for animals to advance brain research. Neuron. 2021;109:2374–9.

    Article  CAS  PubMed  Google Scholar 

  18. Koprdova R, Csatlosova K, Durisova B, Bogi E, Majekova M, Dremencov E, et al. Electrophysiology and behavioral assessment of the new molecule SMe1EC2M3 as a representative of the future class of triple reuptake inhibitors. Molecules. 2019;24:4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dremencov E, Csatlosova K, Durisova B, Moravcikova L, Lacinova L, Jezova D. Effect of physical exercise and acute escitalopram on the excitability of brain monoamine neurons: in vivo electrophysiological study in rats. Int J Neuropsychopharmacol. 2017;20:585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dremencov E, Lacinova L, Flik G, Folgering JHA, Cremers T, Westerink BHC. Purinergic regulation of brain catecholamine neurotransmission: in vivo electrophysiology and microdialysis study in rats. Gen Physiol Biophys. 2017;36:431–41.

    Article  CAS  PubMed  Google Scholar 

  21. Csatlosova K, Bogi E, Durisova B, Grinchii D, Paliokha R, Moravcikova L, et al. Maternal immune activation in rats attenuates the excitability of monoamine-secreting neurons in adult offspring in a sex-specific way. Eur Neuropsychopharmacol. 2021;43:82–91.

    Article  CAS  PubMed  Google Scholar 

  22. Grinchii D, Paliokha R, Tseilikman V, Dremencov E. Inhibition of cytochrome P450 by proadifen diminishes the excitability of brain serotonin neurons in rats. Gen Physiol Biophys. 2018;37:711–3.

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos G, Watson C. Paxino's and Watson's The rat brain in stereotaxic coordinates, 7th ed. Amsterdam; Boston: Elsevier/AP, Academic Press is an imprint of Elsevier; 2014.

  24. El Mansari M, Ebrahimzadeh M, Hamati R, Iro CM, Farkas B, Kiss B, et al. Long-term administration of cariprazine increases locus coeruleus noradrenergic neurons activity and serotonin(1A) receptor neurotransmission in the hippocampus. J Psychopharmacol. 2020;34:1143–54.

    Article  PubMed  Google Scholar 

  25. Kandel ER, Spencer WA. Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol. 1961;24:243–59.

    Article  CAS  PubMed  Google Scholar 

  26. Vandermaelen CP, Aghajanian GK. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 1983;289:109–19.

    Article  CAS  PubMed  Google Scholar 

  27. Grace AA, Bunney BS. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons–1. Identification and characterization. Neuroscience. 1983;10:301–15.

    Article  CAS  PubMed  Google Scholar 

  28. Adeniyi PA, Shrestha A, Ogundele OM. Distribution of VTA glutamate and dopamine terminals, and their significance in CA1 neural network activity. Neuroscience. 2020;446:171–98.

    Article  CAS  PubMed  Google Scholar 

  29. Hajós M, Allers KA, Jennings K, Sharp T, Charette G, Sík A, et al. Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci. 2007;25:119–26.

    Article  PubMed  Google Scholar 

  30. Grace A, Bunney B. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4:2877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dawe GS, Huff KD, Vandergriff JL, Sharp T, O’Neill MJ, Rasmussen K. Olanzapine activates the rat locus coeruleus: in vivo electrophysiology and c-Fos immunoreactivity. Biol Psychiat. 2001;50:510–20.

    Article  CAS  PubMed  Google Scholar 

  32. Karailiev P, Hlavacova N, Chmelova M, Homer NZM, Jezova D. Tight junction proteins in the small intestine and prefrontal cortex of female rats exposed to stress of chronic isolation starting early in life. Neurogastroenterol Motil. 2021;33:e14084.

    Article  CAS  PubMed  Google Scholar 

  33. Hlavacova N, Bakos J, Jezova D. Eplerenone, a selective mineralocorticoid receptor blocker, exerts anxiolytic effects accompanied by changes in stress hormone release. J Psychopharmacol. 2010;24:779–86.

    Article  CAS  PubMed  Google Scholar 

  34. Dubovický M, Skultétyová I, Jezová D. Neonatal stress alters habituation of exploratory behavior in adult male but not female rats. Pharmacol Biochem Behav. 1999;64:681–6.

    Article  PubMed  Google Scholar 

  35. Dubovicky M, Jezova D. Effect of chronic emotional stress on habituation processes in open field in adult rats. Ann NY Acad Sci. 2004;1018:199–206.

    Article  CAS  PubMed  Google Scholar 

  36. Tao R, Auerbach SB. Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther. 2002;303:549–56.

    Article  CAS  PubMed  Google Scholar 

  37. Wozny C, Maier N, Fidzinski P, Breustedt J, Behr J, Schmitz D. Differential cAMP signaling at hippocampal output synapses. J Neurosci. 2008;28:14358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Easter A, Sharp TH, Valentin JP, Pollard CE. Pharmacological validation of a semi-automated in vitro hippocampal brain slice assay for assessment of seizure liability. J Pharmacol Toxicol Methods. 2007;56:223–33.

    Article  CAS  PubMed  Google Scholar 

  39. Watson GB, Lanthorn TH. Electrophysiological actions of delta opioids in CA1 of the rat hippocampal slice are mediated by one delta receptor subtype. Brain Res. 1993;601:129–35.

    Article  CAS  PubMed  Google Scholar 

  40. Chung PC, Boehrer A, Stephan A, Matifas A, Scherrer G, Darcq E, et al. Delta opioid receptors expressed in forebrain GABAergic neurons are responsible for SNC80-induced seizures. Behav Brain Res. 2015;278:429–34.

    Article  PubMed  Google Scholar 

  41. Bausch SB, Garland JP, Yamada J. The delta opioid receptor agonist, SNC80, has complex, dose-dependent effects on pilocarpine-induced seizures in Sprague-Dawley rats. Brain Res. 2005;1045:38–44.

    Article  CAS  PubMed  Google Scholar 

  42. Devine DP, Leone P, Carlezon WA, Wise RA. Ventral mesencephalic ∂ opioid receptors are involved in modulation of basal mesolimbic dopamine neurotransmission: an anatomical localization study. Brain Res. 1993;622:348–52.

    Article  CAS  PubMed  Google Scholar 

  43. Perrine SA, Hoshaw BA, Unterwald EM. Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol. 2006;147:864–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, et al. Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides. 2008;29:93–103.

    Article  CAS  PubMed  Google Scholar 

  45. Hudzik TJ, Maciag C, Smith MA, Caccese R, Pietras MR, Bui KH, et al. Preclinical pharmacology of AZD2327: a highly selective agonist of the δ-opioid receptor. J Pharmacol Exp Ther. 2011;338:195–204.

    Article  CAS  PubMed  Google Scholar 

  46. Solati J, Zarrindast MR, Salari AA. Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats. Psychiatry Clin Neurosci. 2010;64:634–41.

    Article  CAS  PubMed  Google Scholar 

  47. Randall-Thompson JF, Pescatore KA, Unterwald EM. A role for delta opioid receptors in the central nucleus of the amygdala in anxiety-like behaviors. Psychopharmacology. 2010;212:585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N, N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats. J Pharmacol Exp Ther. 2008;324:714–24.

    Article  CAS  PubMed  Google Scholar 

  49. Nozaki C, Le Bourdonnec B, Reiss D, Windh RT, Little PJ, Dolle RE, et al. δ-Opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization. J Pharmacol Exp Ther. 2012;342:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jutkiewicz EM, Kaminsky ST, Rice KC, Traynor JR, Woods JH. Differential behavioral tolerance to the delta-opioid agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N, N-diethylbenzamide) in Sprague-Dawley rats. J Pharmacol Exp Ther. 2005;315:414–22.

    Article  CAS  PubMed  Google Scholar 

  51. Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, et al. Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci. 2010;30:16459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vicente-Sanchez A, Dripps IJ, Tipton AF, Akbari H, Akbari A, Jutkiewicz EM, et al. Tolerance to high-internalizing δ opioid receptor agonist is critically mediated by arrestin 2. Br J Pharmacol. 2018;175:3050–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther. 2019;199:58–90.

    Article  CAS  PubMed  Google Scholar 

  54. Zafiri D, Duvarci S. Dopaminergic circuits underlying associative aversive learning. Front Behav Neurosci. 2022;16:1041929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and Slovak Academy of Sciences (grant No 2/0057/22; ED) Slovak Research and Development Agency (APVV-18-0283; DJ and partly APVV-19-0435; LL and APVV-20-0202; ED) and the Neuron Era Net UNMET project (NEURON-051; DJ). The funding agencies had no further role in study design; in the collection, analysis, and interpretation of data, in the writing of the manuscript, and in the decision to submit the manuscript for publication. The authors thank Dr Michal Dubovický for his valuable advice with respect to the measurements of habituation processes.

Author information

Authors and Affiliations

Authors

Contributions

ED, LL, and DJ planned the study and formulated the working hypothesis. DG, ZR, and PC conducted the experiments. ED, DG, ZR, and PC analyzed the results. ED, ZR, and DJ wrote the manuscript. All authors critically proofread the manuscript and approved it for publication.

Corresponding author

Correspondence to Eliyahu Dremencov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

Experiments with Animals: All experimental procedures were approved by the Animal Health and Animal Welfare Division of the State Veterinary and Food Administration of the Slovak Republic (Permit number Ro 3592/15-221) and confirmed to the Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2348 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dremencov, E., Grinchii, D., Romanova, Z. et al. Effects of chronic delta-opioid receptor agonist on the excitability of hippocampal glutamate and brainstem monoamine neurons, anxiety, locomotion, and habituation in rats. Pharmacol. Rep 75, 585–595 (2023). https://doi.org/10.1007/s43440-023-00485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00485-1

Keywords

Navigation