Skip to main content
Log in

In rats chronically treated with clozapine, tyrosine depletion attenuates the clozapine-induced in vivo increase in prefrontal cortex dopamine and norepinephrine levels

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

We previously reported that depletion of brain tyrosine attenuated the acute clozapine (CLZ)-induced increase in medial prefrontal cortex (MPFC) dopamine (DA) levels. This effect was now examined after chronic CLZ treatment. Male rats received CLZ (10 mg kg−1 day−1) in drinking water for 21 days. On day 18, a cannula was stereotaxically implanted over the MPFC. A microdialysis probe was inserted on day 20. On day 21 after a stable baseline was reached, rats received an acute injection of vehicle (VEH) or a tyrosine- and phenylalanine-free mixture of neutral amino acid [NAA(−)] (total 1 g kg−1, i.p., two injections, 1 h apart) followed by CLZ (10 mg kg−1, i.p.) or VEH. Basal tyrosine or norepinephrine (NE) levels were not different between the groups, but basal DA was higher in the group treated chronically with CLZ (p<0.05). Acute CLZ (10 mg kg−1, i.p.) increased MPFC DA and NE levels to 370% and 510% of baseline, respectively, and similarly in rats chronically pretreated with CLZ or VEH. NAA(−) did not affect basal MPFC DA or NE levels but significantly attenuated acute CLZ-induced DA (220% of baseline) and NE (330% of baseline) levels (p<0.01) in rats pretreated chronically with CLZ or with VEH. These data demonstrate that even after chronic CLZ administration, the acute CLZ-induced increases in MPFC DA and NE levels depend on the availability of brain tyrosine. Judicious manipulation of brain tyrosine levels may provide a useful probe as well as a mechanism for enhancing psychotropic drug actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Centorrino F, Flood JG, Volpicelli SA, Huston-Lyons D, Cohen BM (1993) Tissue concentrations of clozapine and its metabolites in the rat. Neuropsychopharmacology 9:117–124

    PubMed  CAS  Google Scholar 

  • Biggio G, Porceddu ML, Gessa GL (1976) Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic-adenosine-3′,5′-monophosphate content in the rat caudate nucleus induced by the acute administration of an aminoacid mixture lacking tyrosine and phenylalanine. J Neurochem 26:1253–1255

    PubMed  CAS  Google Scholar 

  • Blanc G, Herve D, Simon H, Lisoprawski A, Glowinski J, Tassin JP (1980) Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature 284:265–267

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bongiovanni R, Yamamoto BK, Jaskiw GE (2001) Improved method for the measurement of large neutral amino acids in biological matrices. J Chromatogr B Biomed Sci Appl 754:369–376

    Article  PubMed  CAS  Google Scholar 

  • Bongiovanni R, Kirkbride B, Walmire P, Jaskiw GE (2005) Tyrosine administration does not affect desipramine-induced dopamine levels as measured in vivo in prefrontal cortex. Brain Res 1054(2):203–206

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on precursor amino-acid levels in rat brain. Naunyn Schmiedebergs Arch Pharmacol 303:157–164

    Article  PubMed  CAS  Google Scholar 

  • Chen JP, Ruan D, Paredes W, Gardner EL (1992) Effects of acute and chronic clozapine on dopaminergic function in medial prefrontal cortex of awake, freely moving rats. Brain Res 571:235–241

    Article  PubMed  CAS  Google Scholar 

  • Chung YC, Li Z, Dai J, Meltzer HY, Ichikawa J (2004) Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism. Brain Res 1023:54–63

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2002) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, New York

    Google Scholar 

  • DePietro FR, Fernstrom JD (1999) The relative roles of phenylalanine and tyrosine as substrates for DOPA synthesis in PC12 cells. Brain Res 831:72–84

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Roth RH (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog Brain Res 85:367–402

    PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Vacca G, Pira L, Arca A, Casu MA, Pani L, Gessa GL (2003) Co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacology (Berl) 167:79–84

    CAS  Google Scholar 

  • During MJ, Acworth IN, Wurtman RJ (1989) Dopamine release in rat striatum: physiological coupling to tyrosine supply. J Neurochem 52:1449–1454

    PubMed  CAS  Google Scholar 

  • Fairbrother IS, Arbuthnott GW, Kelly JS, Butcher SP (1990) In vivo mechanisms underlying dopamine release from rat nigrostriatal terminals: II. Studies using potassium and tyramine. J Neurochem 54:1844–1851

    PubMed  CAS  Google Scholar 

  • Fernstrom MH, Fernstrom JD (1995) Acute tyrosine depletion reduces tyrosine hydroxylation rate in rat central nervous system. Life Sci 57:97–102

    Article  CAS  Google Scholar 

  • Fernstrom MH, Volk EA, Fernstrom JD (1984) In vivo tyrosine hydroxylation in the diabetic rat retina: effect of tyrosine administration. Brain Res 298:167–170

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Baker RL, Fernstrom JD (1989) In vivo tyrosine hydroxylation rate in retina: effects of phenylalanine and tyrosine administration in rats pretreated with p-chlorophenylalanine. Brain Res 499:291–298

    Article  PubMed  CAS  Google Scholar 

  • Fischer V, Schmitt U, Weigmann H, Von Keller B, Reuss S, Hiemke C, Dahmen N (1998) Chronical haloperidol and clozapine treatment in rats: differential RNA display analysis, behavioral studies and serum level determination. Prog Neuropsychopharmacol Biol Psychiatry 22:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Gessa GL, Devoto P, Diana M, Flore G, Melis M, Pistis M (2000) Dissociation of haloperidol, clozapine, and olanzapine effects on electrical activity of mesocortical dopamine neurons and dopamine release in the prefrontal cortex. Neuropsychopharmacology 22:642–649

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Hernandez L, Hoebel BG (1995) Chronic clozapine selectively decreases prefrontal cortex dopamine as shown by simultaneous cortical, accumbens, and striatal microdialysis in freely moving rats. Pharmacol Biochem Behav 52:581–589

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi R, Pozzi L, Samanin R (1995) Further studies on the effects of chronic clozapine on regional extracellular dopamine levels in the brain of conscious rats. Brain Res 670:165–168

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Bongiovanni R (2004) Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat. Psychopharmacology (Berl) 172:100–107

    Article  CAS  Google Scholar 

  • Jaskiw GE, Collins KA, Pehek EA, Yamamoto BK (2001) Tyrosine augments acute clozapine- but not haloperidol-induced dopamine release in the medial prefrontal cortex of the rat: an in vivo microdialysis study. Neuropsychopharmacology 25:149–156

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Simpson C, Bongiovanni R, Yamamoto BK (2004) Tyrosine augments clozapine-induced dopamine release in the medial prefrontal cortex of the rat in vivo: effects of access to food. Neurosci Lett 357:5–8

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw GE, Kirkbride B, Newbould E, Young D, Durkalski V, Bongiovanni R (2005) Clozapine-induced dopamine release in the medial prefrontal cortex is augmented by a moderate concentration of locally administered tyrosine but attenuated by high tyrosine concentrations or by tyrosine depletion. Psychopharmacology (Berl) 179(4):713–724

    Article  CAS  Google Scholar 

  • Joh TH, Turk DH, Reis DJ (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase mechanism and enzyme activation. Proc Natl Acad Sci U S A 75:4744–4748

    PubMed  CAS  ADS  Google Scholar 

  • Kandera J, Levi G, Lajtha A (1968) Control of cerebral metabolite levels. II. Amino acid uptake and levels in various areas of the rat brain. Arch Biochem Biophys 126:249–260

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S, Kaufman EE (1985) Tyrosine hydroxylase. In: Blakley RL, Benkovic SJ (eds) Chemistry and biochemistry of the pterins. Wiley, New York, pp 251–352

    Google Scholar 

  • Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, Langstrom B (1999) Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by l-(beta-11C) DOPA and PET. Biol Psychiatry 46:681–688

    Article  PubMed  CAS  Google Scholar 

  • Lund-Andersen H (1979) Transport of glucose from blood to brain. Physiol Rev 59:305–352

    PubMed  CAS  Google Scholar 

  • McTavish SF, Callado L, Cowen PJ, Sharp T (1999a) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384

    Article  PubMed  CAS  Google Scholar 

  • McTavish SF, Cowen PJ, Sharp T (1999b) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology (Berl) 141:182–188

    Article  CAS  Google Scholar 

  • McTavish SF, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360

    Article  PubMed  CAS  Google Scholar 

  • Milner JD, Wurtman RJ (1986) Catecholamine synthesis: physiological coupling to precursor supply. Biochem Pharmacol 35:875–881

    Article  PubMed  CAS  Google Scholar 

  • Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494

    Article  PubMed  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54:1755–1760

    PubMed  CAS  Google Scholar 

  • Morgenroth VA, Walters JR, Roth RH (1976) Dopaminergic neurons—alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol 25:655–661

    Article  PubMed  CAS  Google Scholar 

  • Morrow BA, Rosenberg SJ, Roth RH (1999) Chronic clozapine, but not haloperidol, alters the response of mesoprefrontal dopamine neurons to stress and clozapine challenges in rats. Synapse 34:28–35

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1977) Regulation of amino acid availability to the brain. In: Wurtman RJ, Wurtman JJ (eds) Nutrition and the brain. Raven, New York, pp 141–204

    Google Scholar 

  • Pardridge WM, Oldendorf WH (1975) Kinetic analysis of blood–brain barrier transport of amino acids. Biochim Biophys Acta 401:128–136

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson D (1982) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Pehek EA (1999) Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. J Pharmacol Exp Ther 289:14–23

    PubMed  CAS  Google Scholar 

  • Pehek EA, Yamamoto BK (1994) Differential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate–putamen. J Neurochem 63:2118–2124

    Article  PubMed  CAS  Google Scholar 

  • Rehavi M, Roz N, Weizman A (2002) Chronic clozapine, but not haloperidol, treatment affects rat brain vesicular monoamine transporter 2. Eur Neuropsychopharmacol 12:261–268

    Article  PubMed  CAS  Google Scholar 

  • Scally MC, Ulus IH, Wurtman RJ (1977) Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J Neural Transm 43:103–108

    Article  Google Scholar 

  • Scarna A, Gijsman HJ, McTavish SF, Harmer CJ, Cowen PJ, Goodwin GM (2003) Effects of a branched-chain amino acid drink in mania. Br J Psychiatry 182:210–213

    Article  PubMed  CAS  Google Scholar 

  • Schmitt U, Dahmen N, Fischer V, Weigmann H, Rao ML, Reuss S, Hiemke C (1999) Chronic oral haloperidol and clozapine in rats: a behavioral evaluation. Neuropsychobiology 39:86–91

    Article  PubMed  CAS  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapaport SI (1987) Kinetics of neutral amino acid transport across the blood–brain barrier. J Neurochem 49:1651–1658

    PubMed  CAS  Google Scholar 

  • Sved AF, Fernstrom JD (1981) Tyrosine availability and dopamine synthesis in the striatum: studies with gamma-butyrolactone. Life Sci 29:743–748

    Article  PubMed  CAS  Google Scholar 

  • Tejedor-Real P, Faucon BN, Dumas S, Mallet J (2003) Tyrosine hydroxylase mRNA and protein are down-regulated by chronic clozapine in both the mesocorticolimbic and the nigrostriatal systems. J Neurosci Res 72:105–115

    Article  PubMed  CAS  Google Scholar 

  • Verrey F (2003) System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445:529–533

    PubMed  CAS  Google Scholar 

  • Westerink BHC, Wirix E (1983) On the significance of tyrosine for the synthesis and catabolism of dopamine in rat brain: evaluation by HPLC with electrochemical detection. J Neurochem 40:758–764

    PubMed  CAS  Google Scholar 

  • Westerink BH, De Boer P, De Vries JB, Kruse CG, Long SK (1998) Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex of the rat brain. Eur J Pharmacol 361:27–33

    Article  PubMed  CAS  Google Scholar 

  • Westerink BH, Kawahara Y, De Boer P, Geels C, De Vries JB, Wikstrom HV, Van Kalkeren A, Van Vliet B, Kruse CG, Long SK (2001) Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 412:127–138

    Article  PubMed  CAS  Google Scholar 

  • Wiesel F-A, Blomqvist G, Halldin C, Sjogren I, Bjerkenstedt L, Venizelos N, Hagenfeldt L (1991) The transport of tyrosine into the human brain as determined with l-[1-11C]tyrosine and PET. J Nucl Med 32:2043–2049

    PubMed  CAS  Google Scholar 

  • Wiesel F-A, Edman G, Eriksson A, Flyckt L, Nyman H, Venizelos N, Bjerkenstedt L (2005) Kinetics of tyrosine transport and cognitive functioning in schizophrenia. Schizophr Res 74(1):81–89

    Article  PubMed  Google Scholar 

  • Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14:4159–4166

    PubMed  CAS  Google Scholar 

  • Yavich L, MacDonald E (2000) Dopamine release from pharmacologically distinct storage pools in rat striatum following stimulation at frequency of neuronal bursting. Brain Res 870:73–79

    Article  PubMed  CAS  Google Scholar 

  • Youngren KD, Moghaddam B, Bunney BS, Roth RH (1994) Preferential activation of dopamine overflow in prefrontal cortex produced by chronic clozapine treatment. Neurosci Lett 165:41–44

    Article  PubMed  CAS  Google Scholar 

  • Youngren KD, Inglis FM, Pivirotto PJ, Jedema HP, Bradberry CW, Goldman-Rakic PS, Roth RH, Moghaddam B (1999) Clozapine preferentially increases dopamine release in the rhesus monkey prefrontal cortex compared with the caudate nucleus. Neuropsychopharmacology 20:403–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Office of Research and Development, Medical Research Service of the Department of Veterans Affairs. Dr. Jaskiw has conducted clinical trials for and/or received lecture sponsorship from the following: Bristol-Myers, Janssen, Lilly, Novartis, Pfizer, and Zeneca Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Jaskiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaskiw, G.E., Kirkbride, B. & Bongiovanni, R. In rats chronically treated with clozapine, tyrosine depletion attenuates the clozapine-induced in vivo increase in prefrontal cortex dopamine and norepinephrine levels. Psychopharmacology 185, 416–422 (2006). https://doi.org/10.1007/s00213-005-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0283-1

Keywords

Navigation