Skip to main content

Advertisement

Log in

Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

There are conflicting reports as to whether alterations in tyrosine levels affect functional indices of striatal dopamine (DA) transmission. Since the DA antagonist haloperidol (HAL) increases striatal DA release and induces catalepsy through its actions on striatal DA systems, it provides a useful paradigm to assess both neurochemical and behavioral effects of lowering brain tyrosine levels.

Objectives

To determine how brain tyrosine depletion affects HAL-induced catalepsy and striatal DA release in awake, freely moving rats.

Methods

In male rats, a control or tyrosine- and phenylalanine-free neutral amino acid solution NAA(−) (IP) was administered 30–60 min prior to HAL (IP). In one cohort, striatal microdialysate was assayed for DA levels. In a parallel cohort, catalepsy was measured using the bar test.

Results

NAA (−) reduced striatal tyrosine levels by 60%. The latter did not affect basal striatal DA release, but consistently delayed the attainment of maximal HAL-induced (0.19 mg/kg and 0.25 mg/kg SC) striatal DA release; the latter was abolished by administration of tyrosine. NAA(−) also potentiated HAL-induced catalepsy.

Conclusions

Acute brain tyrosine depletion attenuates HAL-induced striatal DA release and potentiates haloperidol-induced catalepsy. Both effects can be reversed by administration of tyrosine. Overall, the data indicate that tyrosine depletion affects both neurochemical and behavioral indices of striatal DA release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Asin KE, Wirtshafter D, Fibiger HC (1982) Alterations in drug induced catalepsy and post-decapitation convulsions following brain and spinal cord depletion of norepinephrine by the neurotoxin DSP-4. Life Sci 30:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Biggio G, Porceddu ML, Gessa GL (1976) Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic-adenosine-3’,5’-monophosphate content in the rat caudate nucleus induced by the acute administration of an amino acid mixture lacking tyrosine and phenylalanine. J Neurochem 26:1253–1255

    CAS  PubMed  Google Scholar 

  • Bongiovanni R, Yamamoto BK, Jaskiw GE (2001) Improved method for the measurement of large neutral amino acids in biological matrices. J Chromatogr B Biomed Sci Appl 754:369–376

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of administered tyrosine in the rat: a comparison of serum, brain tissue and in vivo microdialysate levels. J Neurochem (in press)

    Google Scholar 

  • Bradberry CW, Karasic DH, Deutch AY, Roth RH (1989) Regionally-specific alterations in mesotelencephalic dopamine synthesis in diabetic rats: association with precursor tyrosine. J Neural Transm 78:221–229

    CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de BA, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1978) Dependence of 5-HT and catecholamine synthesis on precursor amino-acid levels in rat brain. Naunyn-Schmiedberg’s Arch Pharmacol 303:157–164

    Google Scholar 

  • Chance WT, Foley-Nelson T, Nelson JL, Fischer JE (1990) Tyrosine loading increases dopamine metabolite concentrations in the brain. Pharmacol Biochem Behav 35:195–199

    Article  CAS  PubMed  Google Scholar 

  • Costall B, Naylor RJ (1975) Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacology 43:69–74

    CAS  Google Scholar 

  • Costall B, Naylor RJ, Olley JE (1972a) Catalepsy and circling behaviour after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain. Neuropharmacology 11:645–663

    Article  CAS  PubMed  Google Scholar 

  • Costall B, Naylor RJ, Olley JE (1972b) Stereotypic and anticataleptic activities of amphetamine after intracerebral injections. Eur J Pharmacol 18:83–94

    Article  CAS  PubMed  Google Scholar 

  • Delanoy RL, Dunn AJ (1982) Effects of haloperidol and apomorphine on catecholamine metabolism in brain slices. Reserpine-like effects of haloperidol. Biochem Pharmacol 31:3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Delanoy RL, Hunter GD, Dunn AJ (1982) Catecholamine metabolism in brain slices. Determination of relevant precursor pool and the effects of elevated K+. Biochem Pharmacol 31:3289–3296

    Article  CAS  PubMed  Google Scholar 

  • Dunstan R, Broekkamp CL, Lloyd KG (1981) Involvement of caudate nucleus, amygdala or reticular formation in neuroleptic and narcotic catalepsy. Pharmacol Biochem Behav 14:169–174

    Article  CAS  PubMed  Google Scholar 

  • During MJ, Acworth IN, Wurtman RJ (1989) Dopamine release in rat striatum: physiological coupling to tyrosine supply. J Neurochem 52:1449–1454

    CAS  PubMed  Google Scholar 

  • Fernstrom JD, Larin F, Wurtman RJ (1973) Correlations between brain tryptophan and plasma neutral amino acid levels following food consumption in rats. Life Sci 13:517–524

    Article  CAS  Google Scholar 

  • Fog RL, Randrup A, Pakkenberg H (1968) Neuroleptic action of quaternary chlorpromazine and related drugs injected into various brain areas in rats. Psychopharmacologia 12:428–432

    CAS  PubMed  Google Scholar 

  • Fusa K, Saigusa T, Koshikawa N, Cools AR (2002) Tyrosine-induced release of dopamine is under inhibitory control of presynaptic dopamine D2 and, probably, D3 receptors in the dorsal striatum, but not in the nucleus accumbens. Eur J Pharmacol 448:143–150

    Article  CAS  PubMed  Google Scholar 

  • Gijsman HJ, Scarna A, Harmer CJ, McTavish SB, Odontiadis J, Cowen PJ, Goodwin GM (2002) A dose-finding study on the effects of branch chain amino acids on surrogate markers of brain dopamine function. Psychopharmacology 60:192–197

    Article  Google Scholar 

  • Grevet EH, Tietzmann MR, Shansis FM, Hastenpflugl C, Santana LC, Forster L, Kapczinskil F, Izquierdo I (2002) Behavioural effects of acute phenylalanine and tyrosine depletion in healthy male volunteers. J Psychopharmacol 16:51–55

    CAS  PubMed  Google Scholar 

  • Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 154:105–111

    CAS  PubMed  Google Scholar 

  • Honma T, Fukushima H (1978) Effects of bilateral lesions in the striatum or nucleus accumbens on the cataleptogenic activity of neuroleptics in rats. Jpn J Pharmacol 28:231–238

    CAS  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Schellekens KHL (1965) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Arzneimittel-Forschung 15:104–117

    Google Scholar 

  • Jaskiw GE, Collins KA, Pehek EA, Yamamoto BK (2001) Tyrosine augments acute clozapine- but not haloperidol-induced dopamine release in the medial prefrontal cortex of the rat: an in vivo microdialysis study. Neuropsychopharmacology 25:149–156

    Article  CAS  PubMed  Google Scholar 

  • Joh TH, Turk DH, Reis DJ (1978) Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase mechanism and enzyme activation. Proc Natl Acad Sci USA 75:4744–4748

    CAS  PubMed  Google Scholar 

  • Kapatos G, Zigmond M (1977) Dopamine biosynthesis from l-tyrosine and l-phenylalanine in rat brain synaptosomes: preferential use of newly accumulated precursors. J Neurochem 28:1109–1119

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13:358–371

    CAS  PubMed  Google Scholar 

  • Lucas G, Bonhomme N, De DP, Le MM, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63

    Article  CAS  PubMed  Google Scholar 

  • McTavish SF, McPherson MH, Sharp T, Cowen PJ (1999a) Attenuation of some subjective effects of amphetamine following tyrosine depletion. J Psychopharmacol 13:144–147

    Google Scholar 

  • McTavish SF, Cowen PJ, Sharp T (1999b) Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release. Psychopharmacology 141:182–188

    Google Scholar 

  • McTavish SF, Callado L, Cowen PJ, Sharp T (1999c) Comparison of the effects of alpha-methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradrenaline in the rat hippocampus in vivo. J Psychopharmacol 13:379–384

    Google Scholar 

  • McTavish SF, Raumann B, Cowen PJ, Sharp T (2001a) Tyrosine depletion attenuates the behavioural stimulant effects of amphetamine and cocaine in rats. Eur J Pharmacol 424:115–119

    Article  CAS  PubMed  Google Scholar 

  • McTavish SF, McPherson MH, Harmer CJ, Clark L, Sharp T, Goodwin GM, Cowen PJ (2001b) Antidopaminergic effects of dietary tyrosine depletion in healthy subjects and patients with manic illness. Br J Psychiatry 179:356–360

    CAS  PubMed  Google Scholar 

  • Milner JD, Wurtman RJ (1984) Release of endogenous dopamine from electrically stimulated slices of rat striatum. Brain Res 301:139–142

    Article  CAS  PubMed  Google Scholar 

  • Moldawer LL, Kawamura I, Bistrian BR, Blackburn GL (1983) The contribution of phenylalanine to tyrosine metabolism in vivo. Studies in the post-absorptive and phenylalanine-loaded rat. Biochem J 210:811–817

    CAS  PubMed  Google Scholar 

  • Morgenroth VA, Walters JR, Roth RH (1976) Dopaminergic neurons—alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol 25:655–661

    Article  CAS  PubMed  Google Scholar 

  • Mullenix PJ, Tassarni MS, Shunior A, Kernan W (1991) No change in spontaneous behavior of rats after acute oral doses of aspartame, phenylalanine and tyrosine. Fundam Appl Toxicol 495–505

  • Nissbrandt H, Sundstrom E, Jonsson G, Hjorth S, Carlsson A (1989) Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum. J Neurochem 52:1170–1182

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson D (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

  • Pucak ML, Grace AA (1994) Evidence that systemically administered dopamine antagonists activate dopamine neuron firing primarily by blockade of somatodendritic autoreceptors. J Pharmacol Exp Ther 271:1181–1192

    CAS  PubMed  Google Scholar 

  • Richardson MA, Bevans ML, Weber JB, Gonzalez JJ, Flynn CJ, Amira L, Read LL, Suckow RF, Maher TJ (1999) Branched chain amino acids decrease tardive dyskinesia symptoms. Psychopharmacology 143:358–364

    Article  CAS  PubMed  Google Scholar 

  • Richardson MA, Bevans ML, Read LL, Chao HM, Clelland JD, Suckow RF, Maher TJ, Citrome L (2003) Efficacy of the branched-chain amino acids in the treatment of tardive dyskinesia in men. Am J Psychiatry 160:1117–1124

    Article  PubMed  Google Scholar 

  • Samuels S, Fish I, Schwartz SA, Hochgeschwender U (1983) Age related changes in blood-to-brain amino acid transport and incorporation into brain protein. Neurochem Res 8:167–177

    CAS  PubMed  Google Scholar 

  • Sanberg PR (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284:472–473

    CAS  PubMed  Google Scholar 

  • Scally MC, Ulus IH, Wurtman RJ (1977) Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J Neural Transm 43:103–108

    Google Scholar 

  • Scarna A, Gijsman HJ, McTavish SF, Harmer CJ, Cowen PJ, Goodwin GM (2003) Effects of a branched-chain amino acid drink in mania. Br J Psychiatry 182:210–213

    Article  CAS  PubMed  Google Scholar 

  • Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 401:322–330

    CAS  PubMed  Google Scholar 

  • Shore PA, Dorris RL (1975) On a prime role for newly synthesized dopamine in striatal function. Eur J Pharmacol 30:315–318

    Article  CAS  PubMed  Google Scholar 

  • Shurtleff D, Thomas JR, Ahlers ST, Schrot J (1993) Tyrosine ameliorates a cold-induced delayed matching-to-sample performance decrement in rats. Psychopharmacology 112:228–232

    CAS  PubMed  Google Scholar 

  • Wadenberg ML, Soliman A, VanderSpek SC, Kapur S (2001) Dopamine D(2) receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology 25:633–641

    Google Scholar 

  • Westerink BHC, De Vries JB (1991) Effect of precursor loading on the synthesis rate and release of dopamine and serotonin in the striatum: a microdialysis study in conscious rats. J Neurochem 56:228–233

    CAS  PubMed  Google Scholar 

  • Westerink BHC, Wirix E (1983) On the significance of tyrosine for the synthesis and catabolism of dopamine in rat brain: evaluation by HPLC with electrochemical detection. J Neurochem 40:758–764

    CAS  PubMed  Google Scholar 

  • Wurtman RJ, Larin F, Mostafapour S, Fernstrom JD (1974) Brain catechol synthesis: control by brain tyrosine concentration. Science 185:183–184

    CAS  PubMed  Google Scholar 

  • Yavich L, MacDonald E (2000) Dopamine release from pharmacologically distinct storage pools in rat striatum following stimulation at frequency of neuronal bursting. Brain Res 870:73–79

    Article  CAS  PubMed  Google Scholar 

  • Zetterstrom T, Sharp T, Ungerstedt U (1984) Effect of neuroleptic drugs on striatal dopamine release and metabolism in the awake rat studied by intracerebral dialysis. Eur J Pharmacol 106:27–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bryan Yamamoto for his technical consultation. This research was supported by the Office of Research and Development, Medical Research Service of the Department of Veterans Affairs. Dr. Jaskiw has conducted clinical trials for and/or received lecture sponsorship from the following: Bristol-Myers, Janssen, Lilly, Novartis, Pfizer, Zeneca Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Jaskiw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaskiw, G.E., Bongiovanni, R. Brain tyrosine depletion attenuates haloperidol-induced striatal dopamine release in vivo and augments haloperidol-induced catalepsy in the rat. Psychopharmacology 172, 100–107 (2004). https://doi.org/10.1007/s00213-003-1619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1619-3

Keywords

Navigation