Skip to main content
Log in

Long-Term Effects of Iloperidone on Cerebral Serotonin and Adrenoceptor Subtypes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The atypical antipsychotic drug iloperidone has high affinity for a wide range of neurotransmitter receptors, including serotonin and adrenoceptors. We examined the long-term effects of multiple doses of iloperidone (0.5, 1.5, or 5 mg/kg) on serotonin (5-HT) 5-HT1A, 5-HT2A receptor subtypes, and adrenoceptors α1 and α2 subtypes. Rats received daily intraperitoneal injections of different doses of iloperiodone or vehicle for 4 weeks. Receptor autoradiography quantified the levels of 5-HT and adrenoceptors in medial prefrontal cortex (MPC), dorsolateral frontal cortex (DFC), caudate putamen (CPu), nucleus accumbens (NAc), and hippocampal CA1 (HIP-CA1) and CA3 (HIP-CA3) regions. Four weeks of iloperidone treatment significantly and dose-dependently increased 5-HT1A and decreased 5-HT2A receptors in the MPC and DFC. Higher doses of iloperidone (1.5 and 5 mg/kg) increased 5-HT1A and decreased 5-HT2A receptors in HIP-CA1 and HIP-CA3 regions. In addition, repeated iloperidone treatment produced significant increases in α1- and α2-adrenoceptors in MPC, DFC, HIP-CA1, and HIP-CA3 regions. No changes in 5-HT and adrenoceptors were observed in other brain regions examined. These results suggest that long-term iloperidone treatment exerts region- and dose-specific effects on forebrain 5-HT and adrenoceptors, which may contribute to its therapeutic benefits in improving positive and negative symptoms of schizophrenia as well as maintaining a benign safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amargós-Bosch M, Adell A, Bortolozzi A, Artigas F (2003) Stimulation of alpha1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: reversal by antipsychotic drugs. J Neurochem 87(4):831–842

    Article  CAS  PubMed  Google Scholar 

  • Arif SA, Mitchell MM (2011) Iloperidone: a new drug for the treatment of schizophrenia. Am J Health Syst Pharm 68(4):301–308

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2004) Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology 174:25–31

    Article  CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Frankenburg FR (1991) Clozapine–a novel antipsychotic agent. N Engl J Med 324:746–754

    Article  CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Tarazi FI (2005) Pharmacotherapy of psychosis and mania. In: Brunton LL, Lazo JS, Parker K (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 461–500

    Google Scholar 

  • Barr AM, Powell SB, Markou A, Geyer MA (2006) Iloperidone reduces sensorimotor gating deficits in pharmacological models, but not a developmental model, of disrupted prepulse inhibition in rats. Neuropharmacology 51:457–465

    Article  CAS  PubMed  Google Scholar 

  • Brunello N, Masotto C, Steardo L, Markstein R, Racagni G (1995) New insights into the biology of schizophrenia through the action mechanism of clozapine. Neuropsychopharmacology 13:177–213

    Article  CAS  PubMed  Google Scholar 

  • Cahir M, Mawhinney T, King DJ (2004) Differential region-specific regulation of central alpha 1-adrenoceptor binding following chronic haloperidol and clozapine administration in the rat. Psychopharmacology 172:196–201

    Article  CAS  PubMed  Google Scholar 

  • Choi YK, Tarazi FI (2018) Long-term effects of iloperidone on cerebral dopamine receptor subtypes. Synapse. https://doi.org/10.1002/syn.22039

    Article  CAS  Google Scholar 

  • Choi YK, Wong EH, Henry B, Shahid M, Tarazi FI (2010) Repeated effects of asenapine on adrenergic and cholinergic muscarinic receptors. Int J Neuropsychopharmacol 13:405–410

    Article  CAS  PubMed  Google Scholar 

  • Choi YK, Adham N, Kiss B, Gyertyán I, Tarazi FI (2017) Long-term effects of aripiprazole exposure on monoaminergic and glutamatergic receptor subtypes: comparison with cariprazine. CNS Spectr 22(6):484–494

    Article  PubMed  Google Scholar 

  • Corbett R, Griffiths L, Shipley JE, Shukla U, Strupczewskim JT, Szczepanik AM, Szewczak MR, Turk DJ, Vargas HM, Kongsamut S (1997) Iloperidone: preclinical profile and early clinical evaluation. CNS Drug Rev 3(2):120–147

    Article  CAS  Google Scholar 

  • Deng C, Dean B (2013) Mapping the pathophysiology of schizophrenia: interactions between multiple cellular pathways. Front Cell Neurosci 7:238

    PubMed  PubMed Central  Google Scholar 

  • Díaz-Mataix L, Scorza MC, Bortolozzi A, Toth M, Celada P, Artigas F (2005) Involvement of 5-HT1A receptors in prefrontal cortex in the modulation of dopaminergic activity: role in atypical antipsychotic action. J Neurosci 25:10831–10843

    Article  CAS  PubMed  Google Scholar 

  • Florijn WJ, Tarazi FI, Creese I (1997) Dopamine receptor subtypes: differential regulation after 8 months treatment with antipsychotic drugs. J Pharmacol Exp Ther 280(2):561–569

    CAS  PubMed  Google Scholar 

  • Francis PT, Pangalos MN, Pearson RC, Middlemiss DN, Stratmann GC, Bowen DM (1992) 5-Hydroxytryptamine1A but not 5-hydroxytryptamine2 receptors are enriched on neocortical pyramidal neurones destroyed by intrastriatal volkensin. J Pharmacol Exp Ther 261(3):1273–1281

    CAS  PubMed  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  CAS  PubMed  Google Scholar 

  • Greene WH (2000) Econometric analysis, 4th edn. Prentice Hall, Upper Saddle River, pp 462–465

    Google Scholar 

  • Gundlach AL, Burazin TC, Jenkins TA, Berkovic SF (1995) Spatiotemporal alterations of central alpha 1-adrenergic receptor binding sites following amygdaloid kindling seizures in the rat: autoradiographic studies using [3H]prazosin. Brain Res 672:214–227

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42:529–545

    Article  CAS  PubMed  Google Scholar 

  • Happe HK, Coulter CL, Gerety ME, Sanders JD, O’Rourke M, Bylund DB, Murrin LC (2004) Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience 123:167–178

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Kitamura N, Kajimoto Y, Shirai Y, Shirakawa O, Mita T, Nishino N, Tanaka C (1993) Differential changes in serotonin 5-HT1A and 5-HT2 receptor binding in patients with chronic schizophrenia. Psychopharmacology 112:S35–S39

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Konradi C (2015) GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res 167(1–3):4–11

    Article  PubMed  Google Scholar 

  • Hertel P, Fagerquist MV, Svensson TH (1999) Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286:105–107

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Karam CS, Ballon JS, Bivens NM, Freyberg Z, Girgis RR, Lizardi-Ortiz JE, Mark S, Lieberman JA, Javitch JA (2010) Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci 31(8):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongsamut S, Roehr JE, Cai J, Hartman HB, Weissensee P, Kerman LL, Tang L, Sandrasagra A (1996) Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol 317:417–423

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Casanova MF, Toti R, Weinberger DR, Kleinman JE (1993) Selective abnormalities of prefrontal serotonergic receptors in schizophrenia. A postmortem study. Arch Gen Psychiatry 50:810–818

    Article  CAS  PubMed  Google Scholar 

  • Leucht S (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  CAS  Google Scholar 

  • Marcus MM, Wiker C, Frånberg O, Konradsson-Geuken A, Langlois X, Jardemark K, Svensson TH (2010) Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 13(7):891–903

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK (1999) 5-HT2A receptor or alpha1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur J Pharmacol 367:197–206

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (2013) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:393–406

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1159–1172

    Article  CAS  Google Scholar 

  • Millan MJ (2000) Improving the treatment of schizophrenia: focus on serotonin 5-HT1A receptors. J Pharmacol Exp Ther 295(3):853–861

    CAS  PubMed  Google Scholar 

  • Mitrano DA, Schroeder JP, Smith Y, Cortright JJ, Bubula N, Vezina P, Weinshenker D (2012) α1 adrenergic receptors are localized on presynaptic elements in the nucleus accumbens and regulate mesolimbic dopamine transmission. Neuropsychopharmacology 37:2161–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninan I, Jardemark KE, Wang RY (2003) Differential effects of atypical and typical antipsychotic drugs on N-methyl-D-aspartate- and electrically evoked responses in the pyramidal cells of the rat medial prefrontal cortex. Synapse 48(2):66–79

    Article  CAS  PubMed  Google Scholar 

  • Nutt DJ (1994) Putting the ‘A’ in atypical: does α2-adrenoceptor antagonism account for the therapeutic advantage of new antipsychotics? J Psychopharmacol 8(4):193–195

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd edn. Academic, Cambridge

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346(2):205–230

    Article  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    Article  CAS  PubMed  Google Scholar 

  • Pudovkina OL, Westerink BH (2005) Functional role of alpha1-adrenoceptors in the locus coeruleus: a microdialysis study. Brain Res 1061:50–56

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Hanizavareh SM, Blum AE (2004) Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology 174:17–24

    Article  CAS  PubMed  Google Scholar 

  • Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124(1–2):57–73

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Walker GB, Zorn SH, Wong EH (2009) Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol 23(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Stahl SM (2013) Role of α1 adrenergic antagonism in the mechanism of action of iloperidone: reducing extrapyramidal symptoms. CNS Spectr 18:285–288

    Article  PubMed  Google Scholar 

  • Strupczewski JT, Bordeau KJ, Chiang Y, Glamkowski EJ, Conway PG, Corbett R, Hartman HB, Szewczak MR, Wilmot CA, Helsley GC (1995) 3-[[(Arylox)alkyl]-piperdinyl]-1,2-benzisoxazoles as D2/5-HT2 antagonists with potential atypical antipsychotic activity: antipsychotic profile of iloperidone (HP 873). J Med Chem 38:1119–1131

    Article  CAS  PubMed  Google Scholar 

  • Svensson TH (2003) Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiatry 27:1145–1158

    Article  CAS  Google Scholar 

  • Szewczak MR, Corbett R, Rush DK, Wilmot CA, Conway PG, Strupczewski JT, Cornfeldt M (1995) The pharmacological profile of iloperidone, a novel atypical antipsychotic agent. J Pharmacol Exp Ther 274(3):1404–1413

    CAS  PubMed  Google Scholar 

  • Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2005) Alpha1-adrenoreceptor in human hippocampus: binding and receptor subtype mRNA expression. Mol Brain Res 139(2):367–371

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Stahl SM (2012) Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother 13(13):1911–1922

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Zhang K, Baldessarini RJ (2002) Long-term effects of olanzapine, risperidone, and quetiapine on serotonin 1A, 2A and 2C receptors in rat forebrain regions. Psychopharmacology 161(3):263–270

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Moran-Gates T, Wong EH, Henry B, Shahid M (2010) Asenapine induces differential regional effects on serotonin receptor subtypes. J Psychopharmacol 24(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Tarsy D, Baldessarini RJ, Tarazi FI (2002) Effects of newer antipsychotics on extrapyramidal function. CNS Drugs 16(1):23–45

    Article  CAS  PubMed  Google Scholar 

  • Tonin FS, Wiens A, Fernandez-Llimos F, Pontarolo R (2016) Iloperidone in the treatment of schizophrenia: an evidence-based review of its place in therapy. Core Evid 11:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadenberg ML, Wiker C, Svensson TH (2007) Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence. Int J Neuropsychopharmacol 10:191–202

    Article  CAS  PubMed  Google Scholar 

  • Weiden PJ, Cutler AJ, Polymeropoulos MH, Wolfgang CD (2008) Safety profile of iloperidone: a pooled analysis of 6-week acute-phase pivotal trials. J Clin Psychopharmacol 28(2 Suppl 1):S12–S19

    Article  CAS  PubMed  Google Scholar 

  • Winer BJ, Brown DR, Michels KM (1991) Statistical principles in experimental drug design, 3rd edn. McGraw-Hill, New York, pp 165–166

    Google Scholar 

Download references

Acknowledgments

Supported by Novartis Pharmaceuticals (FIT). The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank I. Tarazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.K., Tarazi, F.I. Long-Term Effects of Iloperidone on Cerebral Serotonin and Adrenoceptor Subtypes. J Mol Neurosci 66, 59–67 (2018). https://doi.org/10.1007/s12031-018-1133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1133-z

Keywords

Navigation