Skip to main content
Log in

A convergent evolving finite element algorithm for Willmore flow of closed surfaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order \(H^1\)-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix–vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In [6] the opposite sign convention for the normal vector is used.

References

  1. Bartels, S.: A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal. 33(4), 1115–1125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, J.W., Garcke, H., Nürnberg, R.: On the variational approximation of combined second and fourth order geometric evolution equations. SIAM J. Sci. Comput. 29(3), 1006–1041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. on Sci. Comput. 31(1), 225–253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical computations of the dynamics of fluidic membranes and vesicles. Phys. Rev. E 92(5), 052704 (2015)

    Article  Google Scholar 

  6. Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric finite element approximations of curvature driven interface evolutions. In: Handbook of Numerical Analysis vol. 21, pp. 275–423 (2020)

  7. Bao, W., Jiang, W., Srolovitz, D.J., Wang, Y.: Stable equilibria of anisotropic particles on substrates: a generalized Winterbottom construction. SIAM J. Appl. Math. 77(6), 2093–2118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Jiang, W., Wang, Y., Zhao, Q.: A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. J. Comput. Phys. 330, 380–400 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blaschke, W.: Vorlesungen über Differentialgeometrie III. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1929)

    Google Scholar 

  10. Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Parametric FEM for geometric biomembranes. J. Comput. Phys. 229(9), 3171–3188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bao, W., Zhao, Q.: A structure-preserving parametric finite element method for surface diffusion. arXiv:2104.01432 (2021)

  14. Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y., Lowengrub, J., Shen, J., Wang, C., Wise, S.: Efficient energy stable schemes for isotropic and strongly anisotropic Cahn–Hilliard systems with the Willmore regularization. J. Comput. Phys. 365, 56–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deckelnick, K., Dziuk, G.: Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound. 8(1), 21–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deckelnick, K., Dziuk, G.: Error analysis for the elastic flow of parametrized curves. Math. Comput. 78(266), 645–671 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deckelnick, K., Dziuk, G., Elliott, C.M.: Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces. SIAM J. Numer. Anal. 41(6), 2161–2179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deckelnick, K., Dziuk, G., Elliott, C.M.: Fully discrete finite element approximation for anisotropic surface diffusion of graphs. SIAM J. Numer. Anal. 43(3), 1112–1138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289–396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dziuk, G., Elliott, C.M.: \(L^2\)-Estimates for the evolving surface finite element method. Math. Comput. 82(281), 1–24 (2013)

    Article  MATH  Google Scholar 

  24. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–807 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deckelnick, K., Katz, J., Schieweck, F.: A \(C^1\)-finite element method for the Willmore flow of two-dimensional graphs. Math. Comput. 84(296), 2617–2643 (2015)

    Article  MATH  Google Scholar 

  26. Dziuk, G., Lubich, C., Mansour, D.E.: Runge–Kutta time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 32(2), 394–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations, Lecture Notes in Math., 1357, , pp. 142–155. Springer, Berlin (1988)

  28. Dziuk, G.: Computational parametric Willmore flow. Numer. Math. 111(1), 55–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ecker, K.: Regularity Theory for Mean Curvature Flow. Birkhäuser, Boston (2012)

    MATH  Google Scholar 

  30. Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung C 28(11–12), 693–703 (1973)

    Article  Google Scholar 

  32. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, W., Li, B.: A perimeter-decreasing and area-conserving algorithm for surface diffusion flow of curves. arXiv:2102.00374 (2021)

  34. Kovács, B., Li, B., Lubich, C.: A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math. 143(4), 797–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kovács, B., Li, B., Lubich, C., Power Guerra, C.A.: Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math. 137(3), 643–689 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kovács, B.: High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal. 38(1), 430–459 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lubich, C., Mansour, D.E.: Variational discretization of wave equations on evolving surfaces. Math. Comput. 84(292), 513–542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mantegazza, C.: Lecture Notes on Mean Curvature Flow. Progress in Mathematics, Vol. 290. Birkhäuser, Corrected Printing (2012)

  41. Marques, F.C., Neves, A.: Min-Max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  43. Pozzi, P.: Computational anisotropic Willmore flow. Interfaces Free Bound. 17(2), 189–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Persson, P.-O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pozzi, P., Stinner, B.: Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case. IMA J. Numer. Anal. 39(1), 201–234, 03 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Rusu, R.E.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7(3), 229–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thomsen, G.: Grundlagen der konformen Flächentheorie. Abh. Math. Seminar Univ. Hamburg 3(1), 31–56 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  48. Walker, S.W.: The Shape of Things: A Practical Guide to Differential Geometry and the Shape Derivative. SIAM, Philadelphia (2015)

    Book  MATH  Google Scholar 

  49. Willmore, T.J.: Note on embedded surfaces. An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat.(NS) B 11, 493–496 (1965)

  50. Willmore, T.J.: Riemannian Geometry. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993)

    MATH  Google Scholar 

  51. Zhao, Q., Jiang, W., Bao, W.: A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput. 42(1), B327–B352 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Jörg Nick for helpful discussions on implementation and for his nice debugging idea. The work of Buyang Li was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (GRF Project No. PolyU15300920), and an internal grant at The Hong Kong Polytechnic University (PolyU Project ID: P0031035, Work Programme: ZZKQ). The work of Balázs Kovács and Christian Lubich is supported by Deutsche Forschungsgemeinschaft—Project-ID 258734477—SFB 1173. The work of Balázs Kovács is funded by the Heisenberg Programme of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 446431602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Kovács.

Appendix: Proof of Lemma 2.2

Appendix: Proof of Lemma 2.2

We came up with two independent proofs of Lemma 2.2, one based on local coordinates and the other one based on the formalism of Dziuk and Elliott in [22]. As should be, both approaches yield the same result as stated in Lemma 2.2. Here we present the more straightforward proof based on [22].

The following commutator formula for tangential differential operators (\(D_i = (\nabla _{\varGamma })_i\)) is shown in [22, Lemma 2.6]:

$$\begin{aligned} D_i D_j u - D_j D_i u = A_{jk} D_k u \nu _i - A_{ik} D_k u \nu _j \qquad (i , j = 1, 2, 3) , \end{aligned}$$
(7.1)

where we use the convention to sum over repeated indices. We also recall that \(A_{ij} = \ D_i \nu _j = A_{ji}\) and \(H = \mathrm{tr}(\nabla _{\varGamma }\nu ) = D_i \nu _i\).

Using (7.1) we obtain (cf. the proof of Lemma 3.2 in [22])

$$\begin{aligned} D_i D_i D_j u =&D_i \big ( D_j D_i u + A_{jk} D_k u \nu _i - A_{ik} D_k u \nu _j \big ) \\ =&D_i D_j D_i u + D_i \big ( D_k u (A_{jk} \nu _i - A_{ik} \nu _j) \big ) \\ =&D_i D_j D_i u + D_i D_k u \big ( A_{jk} \nu _i - A_{ik} \nu _j \big ) \\&+ D_k u D_i \big ( A_{jk} \nu _i - A_{ik} \nu _j \big ) . \end{aligned}$$

The second term is then rewritten as

$$\begin{aligned}&D_i D_k u \big ( A_{jk} \nu _i - A_{ik} \nu _j \big ) = A_{jk} D_i D_k u \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad = A_{jk} \big ( D_k D_i u + A_{kl} D_l u \nu _i - A_{il} D_l u \nu _k \big ) \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad =A_{jk} (D_k D_i u \nu _i) + A_{jk} A_{kl} D_l u \nu _i\nu _i - A_{jk} A_{il} D_l u \nu _k \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad = - A_{jk} A_{ki} D_i u + A_{jk} A_{kl} D_l u - A_{jk} A_{il} D_l u \nu _k \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad = - (A^2)_{ji} D_i u + (A^2)_{jl} D_l u - A_{jk} A_{il} D_l u \nu _k \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad = - A_{jk} A_{il} D_l u \nu _k \nu _i - A_{ik} D_i D_k u \nu _j \\&\quad = - A_{ik} D_i D_k u \nu _j . \end{aligned}$$

In particular for the last term we have:

$$\begin{aligned}&D_i \big ( A_{jk} \nu _i - A_{ik} \nu _j \big ) = D_i A_{jk} \nu _i - D_i A_{ik} \nu _j + A_{jk} D_i \nu _i - A_{ik} D_i \nu _j \\&\quad = D_i A_{jk} \nu _i - D_i A_{ik} \nu _j + A_{jk} H - A_{ki} A_{ij} \\&\quad = -\varDelta _{\varGamma }\nu _k \nu _j + (HA - A^2)_{jk} . \end{aligned}$$

The third-order term is again rewritten using (7.1) as

$$\begin{aligned} D_i D_j D_i u =&D_j D_i D_i u + A_{jk} D_k D_i u \nu _i - A_{ik} D_k D_i u \nu _j , \end{aligned}$$

which is further rewritten using

$$\begin{aligned} D_k D_i u \nu _i =&D_k (D_i u \nu _i) - D_k \nu _i D_i u = - A_{ki} D_i u , \\ D_k D_i u \nu _j =&D_k (D_i u \nu _j) - D_k \nu _j D_i u . \end{aligned}$$

Therefore,

$$\begin{aligned} D_i D_j D_i u =&D_j D_i D_i u - A_{jk} A_{ki} D_i u - A_{ik} D_k D_i u \nu _j \\ =&D_j D_i D_i u - (A^2)_{ji} D_i u - A_{ik} D_k D_i u \nu _j . \end{aligned}$$

Altogether, the above calculations yield

$$\begin{aligned}&D_i D_i D_j u \\&\quad = D_j D_i D_i u - (A^2)_{ji} D_i u - 2A_{ik} D_k D_i u \nu _j -\varDelta _{\varGamma }\nu _k \nu _j D_k u + (HA - A^2)_{jk} D_k u \\&\quad = D_j D_i D_i u - (A^2)_{ji} D_i u - 2D_k (A_{ik} D_i u) \nu _j + 2D_k A_{ik} D_i u \nu _j\\&\quad -\varDelta _{\varGamma }\nu _k \nu _j D_k u + (HA - A^2)_{jk} D_k u \\&\quad = D_j D_i D_i u - (A^2)_{ji} D_i u - 2D_k (A_{ik} D_i u) \nu _j + \varDelta _{\varGamma }\nu _k \nu _j D_k u + (HA - A^2)_{jk} D_k u . \end{aligned}$$

This implies

$$\begin{aligned} \varDelta _{\varGamma } \nabla _{\varGamma } u&= \nabla _{\varGamma } \varDelta _{\varGamma } u - A^2 \nabla _{\varGamma } u -2\nabla _{\varGamma }\cdot (A\nabla _{\varGamma }u) \nu \\&\quad + (\varDelta _{\varGamma }\nu \cdot \nabla _{\varGamma }u) \nu + (HA - A^2) \nabla _{\varGamma } u , \end{aligned}$$

which is the same as (2.6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, B., Li, B. & Lubich, C. A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numer. Math. 149, 595–643 (2021). https://doi.org/10.1007/s00211-021-01238-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01238-z

Mathematics Subject Classification

Navigation