Skip to main content

Advertisement

Log in

Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  • Abbas M, Alqahtani M, Alshahrani MY, Alabdullh K (2022) Aggressive and drug-resistant pancreatic cancer: challenges and novel treatment approaches. Discov Med 34(173):158–164

    PubMed  Google Scholar 

  • Abubakar M, Puppala ER, Dutta BJ, Maharana KC, Thapa R, Roshan S et al (2023) Epigenetics of rhinovirus. Targeting epigenetics in inflammatory lung diseases: Springer Nature Singapore Singapore; p. 185–97

  • Aggarwal T, Wadhwa R, Gupta R, Paudel KR, Collet T, Chellappan DK et al (2020) microRNAs as biomarker for breast cancer. Endocr Metab Immune Disord Drug Targets 20(10):1597–1610

    Article  CAS  PubMed  Google Scholar 

  • Ahmed K, Zaidi SF, Mati Ur R, Rehman R, Kondo T (2020) Hyperthermia and protein homeostasis: cytoprotection and cell death. J Therm Biol 91:102615

    Article  CAS  PubMed  Google Scholar 

  • Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D (2022) Can cisplatin therapy be improved? Pathways that can be targeted. Int J Mol Sci 23(13):7241

  • Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S et al (2022) Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun 13(1):2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR (2019) Mechanisms of PTEN loss in cancer: it’s all about diversity. Semin Cancer Biol 59:66–79

    Article  PubMed  Google Scholar 

  • Alves-Fernandes DK, Jasiulionis MG (2019) The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci 20(13):3153

  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS et al (2023) Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev 43(4):1141–1200

    Article  CAS  PubMed  Google Scholar 

  • Arnedo M, Latorre-Pellicer A, Lucia-Campos C, Gil-Salvador M, Antoñanzas-Peréz R, Gómez-Puertas P et al (2019) More than one HMG-CoA lyase: the classical mitochondrial enzyme plus the peroxisomal and the cytosolic ones. Int J Mol Sci 20(24)

  • Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M et al (2020) Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells 9(12):2653

  • Bentwich I (2008) Identifying human microRNAs. Curr Top Microbiol Immunol 320:257–269

    CAS  PubMed  Google Scholar 

  • Bertrand FE, McCubrey JA, Angus CW, Nutter JM, Sigounas G (2014) NOTCH and PTEN in prostate cancer. Adv Biol Regul 56:51–65

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran M, Mohan M (2014) microRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 51(4):759–774

    Article  CAS  PubMed  Google Scholar 

  • Bhat AA, Gupta G, Afzal O, Kazmi I, Al-Abbasi FA, Altamimi ASA et al (2023b) Neuropharmacological effect of risperidone: from chemistry to medicine. Chem Biol Interact 369:110296

    Article  CAS  PubMed  Google Scholar 

  • Bhat AA, Afzal O, Afzal M, Gupta G, Thapa R, Ali H et al (2024) MALAT1: A key regulator in lung cancer pathogenesis and therapeutic targeting. Pathol Res Pract 253:154991

    Article  CAS  PubMed  Google Scholar 

  • Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I et al (2023a) Unwinding circular RNA’s role in inflammatory pulmonary diseases. Naunyn-Schmiedeberg’s Arch Pharmacol 1–22:2567–2588

  • Bose S, Steussy CN, López-Pérez D, Schmidt T, Kulathunga SC, Seleem MN et al (2023) Targeting Enterococcus faecalis HMG-CoA reductase with a non-statin inhibitor. Commun Biol 6(1):360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S, Scaggiante B (2016) Epigenetic and miRNAs dysregulation in prostate cancer: the role of nutraceuticals. Anticancer Agents Med Chem 16(11):1385–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D, Rahman M, Nana-Sinkam SP (2014) microRNAs in respiratory disease. A clinician’s overview. Ann Am Thorac Soc. 11(8):1277–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Carleton M, Cleary MA, Linsley PS (2007) microRNAs and cell cycle regulation. Cell Cycle (georgetown, Tex) 6(17):2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Chang AJ, Autio KA, Roach M 3rd, Scher HI (2014) High-risk prostate cancer-classification and therapy. Nat Rev Clin Oncol 11(6):308–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AAA et al (2020) Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 10(11):2075–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou X (2020) Research progress of mTOR inhibitors. Eur J Med Chem 208:112820

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhao Y, Luo W, Chen S, Lin F, Zhang X et al (2020) Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics 10(22):10290–10308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wu Z, Huang S, Wang X, He S, Liu L et al (2022) Adipocyte IRE1α promotes PGC1α mRNA decay and restrains adaptive thermogenesis. Nat Metab 4(9):1166–1184

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Yang ZT, Bai YQ, Cai YF, Zhao JP (2019) Overexpression of Ulk2 inhibits proliferation and enhances chemosensitivity to cisplatin in non-small cell lung cancer. Oncol Lett 17(1):79–86

    CAS  PubMed  Google Scholar 

  • Chowdhury SG, Ray R, Karmakar P (2022) Exosomal miRNAs-a diagnostic biomarker acting as a guiding light in the diagnosis of prostate cancer. Funct Integr Genomics 23(1):23

    Article  PubMed  Google Scholar 

  • Cirilo JA Jr, Yengo CM (2021) A dynamic Dab2 keeps myosin VI stably on track. J Biol Chem 296:100640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochetti G, Rossi de Vermandois JA, Maulà V, Giulietti M, Cecati M, Del Zingaro M et al (2020) Role of miRNAs in prostate cancer: do we really know everything? Urologic Oncol. 38(7):623–35

    Article  CAS  Google Scholar 

  • Collier JJ, Suomi F, Oláhová M, McWilliams TG, Taylor RW (2021) Emerging roles of ATG7 in human health and disease. EMBO Mol Med 13(12):e14824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozar JM, Robles-Fernandez I, Rodriguez-Martinez A, Puche-Sanz I, Vazquez-Alonso F, Lorente JA et al (2019) The role of miRNAs as biomarkers in prostate cancer. Mutat Res, Rev Mutat Res 781:165–174

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5):490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley MJP, Bhinder B, Markowitz GJ, Martin M, Verma A, Sandoval TA et al (2023) Tumor-intrinsic IRE1α signaling controls protective immunity in lung cancer. Nat Commun 14(1):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings S, Alfonso A, Hughes E, Kucera M, Mabey B, Singh N et al (2023) Cancer risk associated with PTEN pathogenic variants identified using multigene hereditary cancer panel testing. JCO Precis Oncol 7:e2200415

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS et al (2023) Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. Naunyn-Schmiedeberg’s Arch Pharmacol 397(5):2793–2833

  • Deleyto-Seldas N, Efeyan A (2021) The mTOR-autophagy axis and the control of metabolism. Front Cell Dev Biol 9:655731

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng L, Tang S (2011) Norcantharidin analogues: a patent review (2006–2010). Expert Opin Ther Pat 21(11):1743–1753

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Ma M, Jiang W, Zheng L, Cui S (2020) miR-493 induces cytotoxic autophagy in prostate cancer cells through regulation on PHLPP2. Curr Pharm Biotechnol 21(14):1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Desilets A, Adam JP, Soulières D (2020) Management of cisplatin-associated toxicities in bladder cancer patients. Curr Opin Support Palliat Care 14(3):286–292

    Article  PubMed  Google Scholar 

  • Dhanesha N, Patel RB, Doddapattar P, Ghatge M, Flora GD, Jain M et al (2022) PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke. Blood 139(8):1234–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet: TIG 38(6):613–626

    Article  CAS  PubMed  Google Scholar 

  • Dinh E, Rival T, Carrier A, Asfogo N, Corti O, Melon C et al (2021) TP53INP1 exerts neuroprotection under ageing and Parkinson’s disease-related stress condition. Cell Death Dis 12(5):460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNicolantonio JJ, McCarty MF, O’Keefe JH (2022) Nutraceutical activation of Sirt1: a review. Open Heart 9(2):e002171

  • Doddapattar P, Dev R, Ghatge M, Patel RB, Jain M, Dhanesha N et al (2022) Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res 130(9):1289–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 63:207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Drake JC, Wilson RJ, Cui D, Guan Y, Kundu M, Zhang M et al (2021) Ulk1, not Ulk2, is required for exercise training-induced improvement of insulin response in skeletal muscle. Front Physiol 12:732308

    Article  PubMed  PubMed Central  Google Scholar 

  • Du J, Li M, Huang Q, Liu W, Li WQ, Li YJ et al (2019) The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 142:294–302

    Article  CAS  PubMed  Google Scholar 

  • Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules (Basel, Switzerland) 21(7):965

  • Duygu B, de Windt LJ, da Costa Martins PA (2016) Targeting microRNAs in heart failure. Trends Cardiovasc Med 26(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Erkisa M, Aydinlik S, Cevatemre B, Aztopal N, Akar RO, Celikler S et al (2020) A promising therapeutic combination for metastatic prostate cancer: chloroquine as autophagy inhibitor and palladium(II) barbiturate complex. Biochimie 175:159–172

    Article  CAS  PubMed  Google Scholar 

  • Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S et al (2016) The potential of microRNAs as prostate cancer biomarkers. Eur Urol 70(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y et al (2023) Alleviating hypoxia to improve cancer immunotherapy. Oncogene 42(49):3591–3604

    Article  CAS  PubMed  Google Scholar 

  • Fang F, Cheng L, Wu X, Ye M, Zhang H (2020) miR-141 promotes colon cancer cell proliferation by targeted PHLPP2 expression inhibitionn. Cancer Manag Res 12:11341–11350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Z, Li S, Yushanjiang F, Feng G, Cui S, Hu S et al (2023) Curcumol alleviates cardiac remodeling via the AKT/NF-κB pathway. Int Immunopharmacol 122:110527

    Article  CAS  PubMed  Google Scholar 

  • Farrow JM, Yang JC, Evans CP (2014) Autophagy as a modulator and target in prostate cancer. Nat Rev Urol 11(9):508–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figliuolo da Paz V, Ghishan FK, Kiela PR (2020) Emerging roles of disabled homolog 2 (DAB2) in immune regulation. Front Immunol. 11:580302

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo R, Adão R, Leite-Moreira AF, Mâncio J, Brás-Silva C (2022) Candidate microRNAs as prognostic biomarkers in heart failure: a systematic review. Rev Port Cardiol. 41(10):865–85

    Article  PubMed  Google Scholar 

  • Fiore R, Schratt G (2007) microRNAs in synapse development: tiny molecules to remember. Expert Opin Biol Ther 7(12):1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JDB, Girardin SE, Philpott DJ (2022) How autophagy controls the intestinal epithelial barrier. Autophagy 18(1):86–103

    Article  CAS  PubMed  Google Scholar 

  • Fuqua JD, Mere CP, Kronemberger A, Blomme J, Bae D, Turner KD et al (2019) ULK2 is essential for degradation of ubiquitinated protein aggregates and homeostasis in skeletal muscle. FASEB J 33(11):11735–11745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y, Li L, Zhang L, Yan S, Gao C, Hu S et al (2018) Association between shift work and risk of prostate cancer: a systematic review and meta-analysis of observational studies. Carcinogenesis 39(2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Qiao Y, Han D, Zhang Y, Ma N (2012) Enemy or partner: relationship between intronic microRNAs and their host genes. IUBMB Life 64(10):835–840

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Zhao Z, Wu R, Wu L, Tian X, Zhang Z (2018) miR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway. Aging 10(8):2113–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Liu Y, Liu Y, Peng Y, Yuan B, Fu Y et al (2021) UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett 520:172–183

    Article  CAS  PubMed  Google Scholar 

  • Garofalo M, Leva GD, Croce CM (2014) microRNAs as anti-cancer therapy. Curr Pharm Des 20(33):5328–5335

    Article  CAS  PubMed  Google Scholar 

  • Ge H, Zhou T, Zhang C, Cun Y, Chen W, Yang Y et al (2023) Targeting ASIC1a promotes neural progenitor cell migration and neurogenesis in ischemic stroke. Research 6:0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesto DS, Pereira CMS, Cerqueira N, Sousa SF (2020) An atomic-level perspective of HMG-CoA-reductase: the target enzyme to treat hypercholesterolemia. Molecules (Basel, Switzerland) 25(17)

  • Gilicze AB, Wiener Z, Tóth S, Buzás E, Pállinger É, Falcone FH et al (2014) Myeloid-derived microRNAs, miR-223, miR27a, and miR-652, are dominant players in myeloid regulation. Biomed Res Int 2014:870267

    Article  PubMed  PubMed Central  Google Scholar 

  • Giusiano S, Baylot V, Andrieu C, Fazli L, Gleave M, Iovanna JL et al (2012) TP53INP1 as new therapeutic target in castration-resistant prostate cancer. Prostate 72(12):1286–1294

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM et al (2022) Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells 11(15):2262

  • Grozescu T, Popa F (2017) Prostate cancer between prognosis and adequate/proper therapy. J Med Life 10(1):5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Liu M, Ding C, Wang X, Wang R, Wu X et al (2016) Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med 5(6):1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Fei Z, Zhu R (2020) miR-21 modulates cisplatin resistance of gastric cancer cells by inhibiting autophagy via the PI3K/Akt/mTOR pathway. Anticancer Drugs 31(4):385–393

    Article  CAS  PubMed  Google Scholar 

  • Gunasekaran B, Shukor MY (2020) HMG-CoA reductase as target for drug development. Methods Mol Biol (clifton, NJ) 2089:245–250

    Article  CAS  Google Scholar 

  • Guo J, Huang X, Wang H, Yang H (2015) Celastrol induces autophagy by targeting AR/miR-101 in prostate cancer cells. PLoS ONE 10(10):e0140745

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo YJ, Liu JX, Guan YW (2016) Hypoxia induced upregulation of miR-301a/b contributes to increased cell autophagy and viability of prostate cancer cells by targeting NDRG2. Eur Rev Med Pharmacol Sci 20(1):101–108

    PubMed  Google Scholar 

  • Gupta G, Chellappan DK, de Jesus Andreolipinto T, Hansbro PM, Bebawy M, Dua K (2018) Tumor suppressor role of miR-503. Panminerva Med 60(1):17–24

    Article  PubMed  Google Scholar 

  • Hahm ER, Singh SV (2020) Cytoprotective autophagy induction by withaferin A in prostate cancer cells involves GABARAPL1. Mol Carcinog 59(10):1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakami MA, Hazazi A, Khan FR, Abdulaziz O, Alshaghdali K, Abalkhail A et al (2024) PVT1 lncRNA in lung cancer: a key player in tumorigenesis and therapeutic opportunities. Pathol Res Pract 253:155019

    Article  CAS  PubMed  Google Scholar 

  • Hashem S, Nisar S, Sageena G, Macha MA, Yadav SK, Krishnankutty R et al (2021) Therapeutic effects of curcumol in several diseases; an overview. Nutr Cancer 73(2):181–195

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P et al (2023) Pre-clinical and clinical importance of miR-21 in human cancers: tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 187:106568

    Article  CAS  PubMed  Google Scholar 

  • He C, Dong X, Zhai B, Jiang X, Dong D, Li B et al (2015) miR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6(30):28867–28881

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Jiang Z, Akakuru OU, Li J, Wu A (2021) Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun 57(93):12417–12435

    Article  CAS  Google Scholar 

  • Hegardt FG (1998) Transcriptional regulation of mitochondrial HMG-CoA synthase in the control of ketogenesis. Biochimie 80(10):803–806

    Article  CAS  PubMed  Google Scholar 

  • Heidari H, Bagherniya M, Majeed M, Sathyapalan T, Jamialahmadi T, Sahebkar A (2023) Curcumin-piperine co-supplementation and human health: a comprehensive review of preclinical and clinical studies. Phytother Res: PTR 37(4):1462–1487

    Article  CAS  PubMed  Google Scholar 

  • Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19(2):121–135

    Article  CAS  PubMed  Google Scholar 

  • Ho PTB, Clark IM, Le LTT (2022) microRNA-based diagnosis and therapy. Int J Mol Sci 23(13)

  • Holder SL, Abdulkadir SA (2014) PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets 14(2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CH, Chao KS, Liao HF, Chen YJ (2013) Norcantharidin, derivative of cantharidin, for cancer stem cells. Evid Based Complement Alternat Med: Ecam 2013:838651

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CC, Peng D, Cai Z, Lin HK (2022) AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 85:52–68

    Article  CAS  PubMed  Google Scholar 

  • Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y (2019) Targeting mTOR for cancer therapy. J Hematol Oncol 12(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Jiang X, Liang X, Jiang G (2018) Molecular and cellular mechanisms of castration resistant prostate cancer. Oncol Lett 15(5):6063–6076

    PubMed  PubMed Central  Google Scholar 

  • Huang Z, Kaller M, Hermeking H (2023a) CRISPR/Cas9-mediated inactivation of miR-34a and miR-34b/c in HCT116 colorectal cancer cells: comprehensive characterization after exposure to 5-FU reveals EMT and autophagy as key processes regulated by miR-34. Cell Death Differ 30(8):2017–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Chen XX, Chen X, Chen QZ, Wang L, Li C et al (2023b) Feasibility of anterior lobe-preserving transurethral enucleation and resection of prostate on improving urinary incontinence in patients with benign prostatic hyperplasia: a retrospective cohort study. Medicine 102(7):e32884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Yuan J, Xie Y, Qing K, Shi Z, Chen G et al (2023c) Targeting nano-regulator based on metal–organic frameworks for enhanced immunotherapy of bone metastatic prostate cancer. Cancer Nanotechnol 14(1):43

    Article  CAS  Google Scholar 

  • Huang R, Li Y, Wu H, Liu B, Zhang X, Zhang Z (2023) 68Ga-PSMA-11 PET/CT versus 68Ga-PSMA-11 PET/MRI for the detection of biochemically recurrent prostate cancer: a systematic review and meta-analysis. Front Oncol 13

  • Hussain MS, Majami AA, Ali H, Gupta G, Almalki WH, Alzarea SI et al (2023a) The complex role of MEG3: an emerging long non-coding RNA in breast cancer. Pathol Res Pract 251:154850

    Article  CAS  PubMed  Google Scholar 

  • Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W et al (2023b) Exploring the role of lncRNA neat1 knockdown in regulating apoptosis across multiple cancer types: a review. Pathol Res Pract 252:154908

    Article  CAS  PubMed  Google Scholar 

  • Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI et al (2024a) From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 253:155015

    Article  CAS  PubMed  Google Scholar 

  • Hussain MS, Afzal O, Gupta G, Goyal A, Almalki WH, Kazmi I et al (2024b) Unraveling NEAT1’s complex role in lung cancer biology: a comprehensive review. Excli J 23:34–52

    PubMed  PubMed Central  Google Scholar 

  • Huyghe J, Priem D, Van Hove L, Gilbert B, Fritsch J, Uchiyama Y et al (2022) ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science (New York, NY) 378(6625):1201–1207

    Article  CAS  Google Scholar 

  • Infantino V, Santarsiero A, Convertini P, Todisco S, Iacobazzi V (2021) Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target. Int J Mol Sci 22(11):5703

  • Iorio MV, Croce CM (2009) microRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27(34):5848–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeckel KM, Limesand SW, Anthony RV (2009) Specificity protein-1 and -3 trans-activate the ovine placental lactogen gene promoter. Mol Cell Endocrinol 307(1–2):118–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JF, Zhou ZY, Liu YZ, Wu L, Nie BB, Huang L et al (2022) Role of Sp1 in atherosclerosis. Mol Biol Rep 49(10):9893–9902

    Article  CAS  PubMed  Google Scholar 

  • Jiang TY, Cui XW, Zeng TM, Pan YF, Lin YK, Feng XF et al (2023) PTEN deficiency facilitates gemcitabine efficacy in cancer by modulating the phosphorylation of PP2Ac and DCK. Sci Transl Med. 15(704):eadd7464

    Article  CAS  PubMed  Google Scholar 

  • Jiao F, Gong Z (2020) The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid Med Cell Longev 2020:6782872

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing X, Yang F, Shao C, Wei K, Xie M, Shen H et al (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18(1):157

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinnin M (2014) Various applications of microRNAs in skin diseases. J Dermatol Sci 74(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Johanns M, Hue L, Rider MH (2023) AMPK inhibits liver gluconeogenesis: fact or fiction? Biochem J 480(1):105–125

    Article  CAS  PubMed  Google Scholar 

  • John Clotaire DZ, Zhang B, Wei N, Gao R, Zhao F, Wang Y et al (2016) miR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun 472(1):194–200

    Article  PubMed  Google Scholar 

  • John Clotaire DZ, Zhang B, Wei N, Gao R, Zhao F, Wang Y et al (2016) miR-26b inhibits autophagy by targeting ULK2 in prostate cancer cells. Biochem Biophys Res Commun 472(1):194–200

    Article  PubMed  Google Scholar 

  • Karbasforooshan H, Roohbakhsh A, Karimi G (2018) SIRT1 and microRNAs: the role in breast, lung and prostate cancers. Exp Cell Res 367(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Karras JG, Sun G, Tay J, Jackson AL (2013) Reflections on microRNAs in chronic pulmonary disease: looking into the miR-ror and crystal ball. Inflamm Allergy Drug Targets 12(2):88–98

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12(1):1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17(1):1–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko R, Seo J, Park H, Lee N, Lee SY (2022) Pim1 promotes IFN-β production by interacting with IRF3. Exp Mol Med 54(11):2092–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolesnikoff N, Attema JL, Roslan S, Bert AG, Schwarz QP, Gregory PA et al (2014) Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem 289(16):11194–11205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziej F, McDonagh B, Burns N, Goljanek-Whysall K (2022) microRNAs as the sentinels of redox and hypertrophic signalling. Int J Mol Sci 23(23):14716

  • Konoshenko MY, Bryzgunova OE, Laktionov PP (2021) miRNAs and radiotherapy response in prostate cancer. Andrology. 9(2):529–45

    Article  CAS  PubMed  Google Scholar 

  • Konoshenko MY, Bryzgunova OE, Laktionov PP (2021) miRNAs and androgen deprivation therapy for prostate cancer. Biochim Biophys Acta Rev Cancer. 1876(2):188625

    Article  CAS  PubMed  Google Scholar 

  • Kotha RR, Luthria DL (2019) Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules (Basel, Switzerland) 24(16):2930

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  PubMed  Google Scholar 

  • Kung HJ (2011) Targeting tyrosine kinases and autophagy in prostate cancer. Horm Cancer 2(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G et al (2024) Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother. 173:116275

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Y (2019) AMPK and autophagy. Adv Exp Med Biol 1206:85–108

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ge Y, Liu FY, Peng YM, Sun L, Li J et al (2012) Norcantharidin, a protective therapeutic agent in renal tubulointerstitial fibrosis. Mol Cell Biochem 361(1–2):79–83

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wan X, Chen H, Yang S, Liu Y, Mo W et al (2014) Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer. Clin Cancer Res 20(9):2312–2325

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhao Z, Zhou Z, Liu R (2016) Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis. Cancer Chemother Pharmacol 78(6):1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y et al (2018a) RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 9(10):952

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen L, Li JJ, Zhou Q, Huang A, Liu WW et al (2018b) miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J Hematol Oncol 11(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Li D, Liu H, Cao B-B, Jiang F, Chen D-N et al (2019) RNF216 regulates the migration of immortalized GnRH neurons by suppressing Beclin1-mediated autophagy. Front Endocrinol 10:12

    Article  Google Scholar 

  • Li XR, Zhou KQ, Yin Z, Gao YL, Yang X (2020) Knockdown of FBP1 enhances radiosensitivity in prostate cancer cells by activating autophagy. Neoplasma 67(5):982–991

    Article  CAS  PubMed  Google Scholar 

  • Li J, Du H, Chen W, Qiu M, He P, Ma Z (2021a) Identification of potential autophagy-associated lncRNA in prostate cancer. Aging 13(9):13153–13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Hu J, Shi Y, Xiao M, Bi T, Wang C et al (2021b) Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment. Cell Cycle (georgetown, Tex) 20(23):2531–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xie L, Zhu L, Li Z, Wang R, Liu X et al (2022) Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun 13(1):5866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Huang Q, He B (2023a) SIRT1 as a potential therapeutic target for chronic obstructive pulmonary disease. Lung 201(2):201–215

    Article  PubMed  Google Scholar 

  • Li J-M, Li X, Chan LW, Hu R, Zheng T, Li H et al (2023c) Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia 66(12):2368–2386

    Article  CAS  PubMed  Google Scholar 

  • Li B, Wang W, Zhao L, Li M, Yan D, Li X et al (2024a) Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox. Adv Mater 36(9):2305378

    Article  CAS  Google Scholar 

  • Li Q, You T, Chen J, Zhang Y, Du C (2023) LI-EMRSQL: Linking Information Enhanced Text2SQL Parsing on Complex Electronic Medical Records. IEEE Trans Reliab

  • Li B, Wang W, Zhao L, Wu Y, Li X, Yan D et al (2024) Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol. https://doi.org/10.1038/s41565-024-01618-0

  • Liang CL, Li XL, Quan XJ, Zhang L (2023a) DAB2 promotes pulmonary fibrosis and may act as an intermediate between IGF-1R and PI3K/AKT signaling pathways. Exp Ther Med 25(4):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J et al (2023b) Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186(13):2748–64.e22

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Zhang Y (2020) microRNA-381 facilitates autophagy and apoptosis in prostate cancer cells via inhibiting the RELN-mediated PI3K/AKT/mTOR signaling pathway. Life Sci 254:117672

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L (2015) microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol Lett 10(4):2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L et al (2016) Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol Rep 35(1):64–72

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Feng J, Dong S, Pan R, Zhuang H, Ding Z (2015) Regulation of autophagy of prostate cancer cells by β-catenin signaling. Cell Physiol Biochem 35(3):926–932

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Blessing AM, Pulliam TL, Shi Y, Wilkenfeld SR, Han JJ et al (2021) Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 40(9):1690–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Liu D, Zhang G, Liang Q, Xiang P, Xu Y et al (2017) miR-361-5p modulates metabolism and autophagy via the Sp1-mediated regulation of PKM2 in prostate cancer. Oncol Rep 38(3):1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li M, Wang Y, Luo J (2017) Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target 25(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li M, Wang Y, Luo J (2017) Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target 25(7):645–652

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y et al (2019) Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res: CR 38(1):184

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F (2022) Near-infrared-absorbing B-N Lewis pair-functionalized anthracenes: electronic structure tuning, conformational isomerism, and applications in photothermal cancer therapy. J Am Chem Soc 144(41):18908–18917

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tang J, Peng L, Nie H, Zhang Y, Liu P (2023a) Cancer-associated fibroblasts promote malignant phenotypes of prostate cancer cells via autophagy: cancer-associated fibroblasts promote prostate cancer development. Apoptosis 28(5–6):881–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhou Q, Ye F, Yang C, Jiang H (2023b) Gut microbiota-derived short-chain fatty acids promote prostate cancer progression via inducing cancer cell autophagy and M2 macrophage polarization. Neoplasia (new York, NY) 43:100928

    Article  CAS  Google Scholar 

  • Liu F, Wang J, Fu Q, Zhang X, Wang Y, Liu J et al (2015) VEGF-activated miR-144 regulates autophagic survival of prostate cancer cells against cisplatin. Tumour Biol

  • López Fontana G, Guglielmi JM, López Fontana JR, Hinojosa Jury ML, López Fontana CM, López Laur JD (2022) Salvage radical prostatectomy in nonmetastatic castration resistant prostate cancer. Arch Esp Urol 75(7):638–641

  • Lu M, Wei F, Ma S, Xu Z, Wang J, Yang C et al (2021) Oncolytic virus as a novel modality for the treatment of prostate cancer. Discov Med 32(167):133–139

    PubMed  Google Scholar 

  • Luo Y, Zhu J, Zhao F, Shi L, Li Y, Wu X (2023a) PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 114:109563

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Zhou Z, Huang C, Zhang P, Sun N, Chen W et al (2023b) Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps. Heliyon 9(7):e17909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yang HZ, Dong BJ, Zou HB, Zhou Y, Kong XM et al (2014) Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia. Oncotarget 5(19):9169–9182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Chen W, Liu Y, Yu L, Mao X, Guo X et al (2023) Artesunate sensitizes human hepatocellular carcinoma to sorafenib via exacerbating AFAP1L2-SRC-FUNDC1 axis-dependent mitophagy. Autophagy 1–16

  • Martínez-Razo G, Domínguez-López ML, de la Rosa JM, Fabila-Bustos DA, Reyes-Maldonado E, Conde-Vázquez E et al (2023) Norcantharidin toxicity profile: an in vivo murine study. Naunyn-Schmiedeberg’s Arch Pharmacol 396(1):99–108

    Article  Google Scholar 

  • Mayor de Castro J, Caño Velasco J, Aragón Chamizo J, Andrés Boville G, Herranz Amo F, Hernández Fernández C (2018) Locally advanced prostate cancer. Definition, diagnosis and treatment. Arch Esp Urol. 71(3):231–8

    PubMed  Google Scholar 

  • Miyazawa Y, Sekine Y, Oka D, Nakazawa S, Tsuji Y, Nakayama H et al (2023) Simvastatin induces autophagy and inhibits proliferation in prostate cancer cells. Anticancer Res 43(12):5377–5386

    Article  CAS  PubMed  Google Scholar 

  • Mukha A, Kahya U, Dubrovska A (2021) Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization. Autophagy 17(11):3879–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray NP, Aedo S, Fuentealba C, Reyes E, Salazar A (2022) The CAPRA-S score and immune dysfunction as a guide to outcome in men treated with prostatectomy radical as mono-therapy for prostate cancer. Arch Esp Urol 75(6):507–516

    Article  PubMed  Google Scholar 

  • Nam RK, Benatar T, Amemiya Y, Sherman C, Seth A (2020) mir-139 regulates autophagy in prostate cancer cells through Beclin-1 and mTOR signaling proteins. Anticancer Res 40(12):6649–6663

    Article  CAS  PubMed  Google Scholar 

  • Naso JR, Cheung S, Ionescu DN, Churg A (2021) Utility of SOX6 and DAB2 for the diagnosis of malignant mesothelioma. Am J Surg Pathol 45(9):1245–1251

    Article  PubMed  Google Scholar 

  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin. J Med Chem 60(5):1620–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimoto M, Nishikawa S, Kondo N, Wanifuchi-Endo Y, Hato Y, Hisada T et al (2019) Prognostic impact of TP53INP1 gene expression in estrogen receptor α-positive breast cancer patients. Jpn J Clin Oncol 49(6):567–575

    Article  PubMed  Google Scholar 

  • Niture S, Tricoli L, Qi Q, Gadi S, Hayes K, Kumar D (2022) microRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation. Tumour Biol 44(1):107–127

    Article  PubMed  Google Scholar 

  • Nowak DG, Katsenelson KC, Watrud KE, Chen M, Mathew G, D’Andrea VD et al (2019) The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J Cell Biol 218(6):1943–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogbu SC, Musich PR, Zhang J, Yao ZQ, Howe PH, Jiang Y (2021) The role of disabled-2 (Dab2) in diseases. Gene 769:145202

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Feng F, Wu J, Fan S, Han J, Wang S et al (2022) Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res 181:106270

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Li W, Yuan L, Mehta RG, Kopelovich L, McCormick DL (2013) Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS ONE 8(8):e70442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Valdagni R et al (2014) miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem Pharmacol 87(4):579–597

    Article  CAS  PubMed  Google Scholar 

  • Popelka H, Klionsky DJ (2022) The RB1CC1 Claw-binding motif: a new piece in the puzzle of autophagy regulation. Autophagy 18(2):237–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Song A, Ma M, Wang P, Zhang X, Lu C et al (2021) Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease. Cell Prolif 54(9):e13107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalinga M, Roy A, Srivastava A, Bhattarai A, Harish V, Suy S et al (2015) microRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget 6(33):34446–34457

    Article  PubMed  PubMed Central  Google Scholar 

  • Saadi H, Seillier M, Carrier A (2015) The stress protein TP53INP1 plays a tumor suppressive role by regulating metabolic homeostasis. Biochimie 118:44–50

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T et al (2023) Curcumin and chemokines: mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology 31(3):1069–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saranyutanon S, Deshmukh SK, Dasgupta S, Pai S, Singh S, Singh AP (2020) Cellular and molecular progression of prostate cancer: models for basic and preclinical research. Cancers 12(9):2651

  • Shaikh MAJ, Altamimi ASA, Afzal M, Gupta G, Singla N, Gilhotra R et al (2024) Unraveling the impact of miR-21 on apoptosis regulation in glioblastoma. Pathol Res Pract 254:155121

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Baruah MM (2019) The microRNA signatures: aberrantly expressed miRNAs in prostate cancer. Clin Transl Oncol 21(2):126–144

    Article  CAS  PubMed  Google Scholar 

  • Shirai T, Nakai A, Ando E, Fujimoto J, Leach S, Arimori T et al (2023) Celastrol suppresses humoral immune responses and autoimmunity by targeting the COMMD3/8 complex. Sci Immunol. 8(81):eadc9324

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Saxena S, Sharma H, Paudel KR, Chakraborty A, MacLoughlin R et al (2024) Emerging role of tumor suppressing microRNAs as therapeutics in managing non-small cell lung cancer. Pathol Res Pract 256:155222

    Article  CAS  PubMed  Google Scholar 

  • Singhvi G, Manchanda P, Krishna Rapalli V, Kumar Dubey S, Gupta G, Dua K (2018) microRNAs as biological regulators in skin disorders. Biomed Pharmacother 108:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Sohn EJ (2018) MicroRNA 200c–3p regulates autophagy via upregulation of endoplasmic reticulum stress in PC-3 cells. Cancer Cell Int 18(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Takayama KI (2017) The biological and clinical advances of androgen receptor function in age-related diseases and cancer [review]. Endocr J 64(10):933–946

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol (clifton, NJ) 445:77–88

    Article  CAS  Google Scholar 

  • Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH et al (2024) Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: from mechanisms to therapeutics. Life Sci 345:122613

    Article  CAS  PubMed  Google Scholar 

  • Tomeh MA, Hadianamrei R, Zhao X (2019) A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci 20(5)

  • Urabe F, Yamamoto Y, Kimura T (2022) miRNAs in prostate cancer: intercellular and extracellular communications. Int J Urol 29(12):1429–1438

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu M, Guan Y, Wu Q (2016) Hypoxia-responsive mir-301a and mir-301b promote radioresistance of prostate cancer cells via downregulating NDRG2. Med Sci Monit 22:2126–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li C, Gu J, Chen C, Duanmu J, Miao J et al (2020) Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling. J Cell Mol Med 24(1):941–953

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nie XB, Liu SJ, Liu J, Bian WH (2022) Curcumol attenuates endometriosis by inhibiting the JAK2/STAT3 signaling pathway. Med Sci Monit 28:e934914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao W, Dai B, Zhu Y, Ye D (2015) Norcantharidin induces autophagy-related prostate cancer cell death through Beclin-1 upregulation by miR-129–5p suppression. Tumour Biol. https://doi.org/10.1007/s13277-015-4488-6

  • Xin X, Du X, Xiao Q, Azevedo HS, He W, Yin L (2019) Drug nanorod-mediated intracellular delivery of microRNA-101 for self-sensitization via autophagy inhibition. Nano-Micro Lett 11(1):82

    Article  CAS  Google Scholar 

  • Xu CG, Yang MF, Fan JX, Wang W (2016) miR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1. Eur Rev Med Pharmacol Sci 20(8):1501–1508

    PubMed  Google Scholar 

  • Xu W, Ding J, Li B, Sun T, You X, He Q et al (2023) Effects of icariin and curcumol on autophagy, ferroptosis, and lipid metabolism based on miR-7/m-TOR/SREBP1 pathway on prostate cancer. BioFactors 49(2):438–456

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang L, Ni S, Li D, Liu J, Chu HY et al (2022) Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation. Nat Commun 13(1):4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun EJ, Kim S, Hsieh JT, Baek ST (2020) Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis 11(9):771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai T, Dou M, Ma Y, Wang H, Liu F, Zhang L et al (2023) Lipid metabolism-related miRNAs with potential diagnostic roles in prostate cancer. Lipids Health Dis 22(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y (2023) Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell 83(14):2524–39.e7

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhang G, Chen J, Li Z, Shi Y, Li G et al (2024) A rationally designed nuclei-targeting FAPI 04-based molecular probe with enhanced tumor uptake for PET/CT and fluorescence imaging. Eur J Nucl Med Mol Imaging 51(6):1593–1604

  • Zhong S, Zhang Z, Su H, Li C, Lin Y, Lu W et al (2022) Efficacy of biological and physical enhancement on targeted muscle reinnervation. Cyborg Bionic Syst

Download references

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il, Saudi Arabia, through project number RG-23 079.

Author information

Authors and Affiliations

Authors

Contributions

Rahamat Unissa Syed, Maali D. Alshammari, and Humera Banu wrote the main manuscript text. Weam M. A. Khojali and Mohammed Jafar wrote the main manuscript text and prepared figures. Potnuri Nagaraju and Alia Alshammari edited the manuscript. All authors reviewed the manuscript. The authors confirm that no paper mill or artificial intelligence was used.

Corresponding authors

Correspondence to Rahamat Unissa Syed or Mohammed Jafar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, R.U., Alshammari, M.D., Banu, H. et al. Targeting the autophagy-miRNA axis in prostate cancer: toward novel diagnostic and therapeutic strategies. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03153-0

Keywords

Navigation