Skip to main content

Advertisement

Log in

Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abuwatfa WH et al (2022) Thermosensitive polymers and thermo-responsive liposomal drug delivery systems. Polymers 14(5):925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Enazi NM et al (2023) In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess Biosyst Eng 46(1):89–103

    Article  CAS  PubMed  Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Alijani HQ et al. (2022) Biosynthesis of core–shell α-Fe2O3@Au nanotruffles and their biomedical applications. Biomass Conversion and Biorefinery

  • Almansob A et al (2022) Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. Appl Nanosci 12(12):3871–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AlSawaftah NM et al (2022) pH-responsive nanocarriers in cancer therapy. Polymers 14(5):936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameen F et al (2023) Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl Nanosci 13(3):2233–2240

    Article  CAS  Google Scholar 

  • Amin M et al (2020) Hyperthermia and temperature-sensitive nanomaterials for spatiotemporal drug delivery to solid tumors. Pharmaceutics 12(11):1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anani T et al (2021) MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics 11(2):579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjama M, Mehnath S, Jeyaraj M (2022) Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. Int J Biol Macromol 213:435–446

    Article  CAS  PubMed  Google Scholar 

  • Aslzad S et al (2023) Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment. Colloid Polym Sci 301(3):273–281

    Article  CAS  Google Scholar 

  • Baghban R et al (2021) Were magnetic materials useful in cancer therapy? Biomed Pharmacother 144:112321

    Article  CAS  PubMed  Google Scholar 

  • Barani M et al (2020) A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Mater Sci Eng, C 113:110975

    Article  CAS  Google Scholar 

  • Begum I et al (2022) A combinatorial approach towards antibacterial and antioxidant activity using tartaric acid capped silver nanoparticles. Processes 10(4):716

    Article  CAS  Google Scholar 

  • Bhat AH et al (2023) Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n sp and whole genome sequencing of its associated bacterial symbiont. Parasites & Vectors 16(1):383

    Article  CAS  Google Scholar 

  • Bhavsar DB, Patel V, Sawant KK (2020) Design and characterization of dual responsive mesoporous silica nanoparticles for breast cancer targeted therapy. Eur J Pharm Sci 152:105428

    Article  CAS  PubMed  Google Scholar 

  • Bienia A et al (2021) Photodynamic therapy and hyperthermia in combination treatment—neglected forces in the fight against cancer. Pharmaceutics 13(8):1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt KL, Cuzick J, Phillips K-A (2020) Key steps for effective breast cancer prevention. Nat Rev Cancer 20(8):417–436

    Article  CAS  PubMed  Google Scholar 

  • Burstein H et al (2021) Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Annals of oncology 32(10):1216–1235

    Article  CAS  PubMed  Google Scholar 

  • Caffa I et al (2020) Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583(7817):620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canaparo R et al (2019) Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24(10):1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C et al (2022) webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res 50(D1):D1123–D1130

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarty A et al (2021) Senescence-induced chemoresistance in triple negative breast cancer and evolution-based treatment strategies. Front Oncol 11:674354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q-Q et al (2019) LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol 53(4):443

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K-J et al (2011) Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer. Biomaterials 32(10):2586–2592

    Article  CAS  PubMed  Google Scholar 

  • Chen S et al (2021) Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway. Eur J Gynaecol Oncol 42(3):554–560

    Article  Google Scholar 

  • Cheng Z et al (2021) Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 14(1):1–27

    Article  Google Scholar 

  • Cheng X et al (2022) Liposomes as multifunctional nano-carriers for medicinal natural products. Front Chem 10:963004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui G et al (2020) Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery+. Sci Technol Adv Mater 21(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Guan J (2020) Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine 1:10–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Dash S et al (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  • de Jong D et al (2023) Advances in PET/CT imaging for breast cancer. J Clin Med 12(13):4537

    Article  PubMed  PubMed Central  Google Scholar 

  • Deepa et al (2022) Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: characterization and antibacterial properties. Front Environ Sci 10

  • Ding H et al (2022a) Preparation and application of pH-responsive drug delivery systems. J Control Release 348:206–238

    Article  CAS  PubMed  Google Scholar 

  • Ding M et al (2022b) Stimuli-responsive nanocarriers for bacterial biofilm treatment. Rare Met 41(2):482–498

    Article  CAS  Google Scholar 

  • Dubey SK et al (2021) Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur J Pharm Sci 164:105890

    Article  CAS  PubMed  Google Scholar 

  • Duma M-N et al (2019) Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol 195(10):861–871

    Article  PubMed  Google Scholar 

  • Elamir A et al (2021) Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 11(1):7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad Ullah M (2019) Breast cancer: current perspectives on the disease status. Breast Cancer Metastasis and Drug Resistance: Challenges and Progress 51–64

  • Fam SY et al (2020) Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials 10(4):787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W et al (2014) Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 6(11):8447–8460

    Article  CAS  PubMed  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884

    Article  CAS  PubMed  Google Scholar 

  • Francies FZ et al (2020) Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res 10(5):1568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gannimani R et al (2020) Acetal containing polymers as pH-responsive nano-drug delivery systems. J Control Release 328:736–761

    Article  CAS  PubMed  Google Scholar 

  • Gao Y et al (2021) UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-mediated chromatin modifications. Cancer Lett 520:172–183

    Article  CAS  PubMed  Google Scholar 

  • Giaquinto AN et al (2022) Breast cancer statistics, 2022. CA: a cancer journal for clinicians 72(6):524–541

    PubMed  Google Scholar 

  • Gooding AJ, Schiemann WP (2020) Epithelial–mesenchymal transition programs and cancer stem cell phenotypes: mediators of breast cancer therapy resistance. Mol Cancer Res 18(9):1257–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M et al (2018) Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discovery Today 23(5):1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Guisasola E et al (2018) Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl Mater Interfaces 10(15):12518–12525

    Article  CAS  PubMed  Google Scholar 

  • Gulzar A et al (2015) Stimuli responsive drug delivery application of polymer and silica in biomedicine. Journal of Materials Chemistry B 3(44):8599–8622

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK et al (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 95(2):197–207

    Article  CAS  PubMed  Google Scholar 

  • Gupta GK et al (2020) Perspectives on triple-negative breast cancer: current treatment strategies, unmet needs, and potential targets for future therapies. Cancers 12(9):2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamedi S, Koosha M (2020) Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment. Appl Clay Sci 197:105770

    Article  CAS  Google Scholar 

  • Hartl D et al (2021) Translational precision medicine: an industry perspective. J Transl Med 19(1):1–14

    Article  Google Scholar 

  • Hassanin I, Elzoghby A (2020) Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resistance 3(4):930

    CAS  PubMed  PubMed Central  Google Scholar 

  • He B et al (2021) A review of current in silico methods for repositioning drugs and chemical compounds. Front Oncol 11:711225

    Article  PubMed  PubMed Central  Google Scholar 

  • Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:1–7

    Article  Google Scholar 

  • Homayun B, Lin X, Choi H-J (2019) Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 11(3):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MI et al (2022) Recent insights into NIR-light-responsive materials for photothermal cell treatments. Nanomaterials 12(19):3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X et al (2023) Review on near-field detection technology in the biomedical field. Advanced Photonics Nexus 2(4):044002–044002

    Article  Google Scholar 

  • Huang X et al (2010) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31(3):438–448

    Article  CAS  PubMed  Google Scholar 

  • Huang P et al (2019) Stimuli-responsive nanodrug self-assembled from amphiphilic drug-inhibitor conjugate for overcoming multidrug resistance in cancer treatment. Theranostics 9(20):5755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer SS, Barr WH, Karnes HT (2006) Profiling in vitro drug release from subcutaneous implants: a review of current status and potential implications on drug product development. Biopharm Drug Dispos 27(4):157–170

    Article  CAS  PubMed  Google Scholar 

  • Jia R et al (2021) Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. International Journal of Nanomedicine 1525–1551

  • Jiang Z-R et al (2022) Identification of novel cuproptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front Oncol 12:988680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing X et al (2022) The intracellular and extracellular microenvironment of tumor site: the trigger of stimuli-responsive drug delivery systems. Small Methods 6(3):2101437

    Article  CAS  Google Scholar 

  • Joseph SK, Sabitha M, Nair SC (2020) Stimuli-responsive polymeric nanosystem for colon specific drug delivery. Advanced Pharmaceutical Bulletin 10(1):1

    Article  CAS  PubMed  Google Scholar 

  • Kang B et al (2015) Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 44(22):8301–8325

    Article  CAS  PubMed  Google Scholar 

  • Karami Fath M et al (2022) The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett 27(1):1–25

    Article  Google Scholar 

  • Karimifard S et al (2022) pH-responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy. ACS Applied Nano Materials 5(7):8811–8825

    Article  CAS  Google Scholar 

  • Katsohiraki M et al (2020) Evaluating preoperative anxiety levels in patients undergoing breast cancer surgery. Asia Pac J Oncol Nurs 7(4):361–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller L-A, Merkel O, Popp A (2021) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug delivery and translational research 1–23

  • Kesharwani P et al (2021) QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers 13(2):250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH et al (2017) Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Investig 47:203–227

    Article  CAS  Google Scholar 

  • Kohane DS, Langer R (2010) Biocompatibility and drug delivery systems. Chem Sci 1(4):441–446

    Article  CAS  Google Scholar 

  • Korde LA et al (2021) Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol 39(13):1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudarha RR, Sawant KK (2017) Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater Sci Eng, C 81:607–626

    Article  CAS  Google Scholar 

  • Kudgus RA et al (2014) Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci Rep 4(1):5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakides TR et al (2021) Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 16(4):042005

    Article  CAS  Google Scholar 

  • Large DE et al (2021) Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 176:113851

    Article  CAS  PubMed  Google Scholar 

  • Lee S et al (2021) Development of paclitaxel-loaded poly (lactic acid)/hydroxyapatite core–shell nanoparticles as a stimuli-responsive drug delivery system. Royal Society Open Science 8(3):202030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X et al (2022) Gli1 promotes epithelial–mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating snail transcriptional activity and stability. Acta Pharmaceutica Sinica B 12(10):3877–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Lin X et al (2022) Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer. Molecules 27(3):948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M, Wang R, Qi X-R (2021) Quality evaluation of drug-loaded liposomes. Liposome-Based Drug Delivery Systems 123–140

  • Liu D et al (2016) The smart drug delivery system and its clinical potential. Theranostics 6(9):1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4):1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X et al (2020) MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene 39(1):234–247

    Article  PubMed  Google Scholar 

  • Lin Q et al. (2023) A novel approach of surface texture mapping for cone-beam computed tomography in image-guided surgical navigation. IEEE Journal of Biomedical and Health Informatics

  • Lu S et al (2023) Analysis and design of surgical instrument localization algorithm. CMES-Computer Modeling in Engineering & Sciences 137(1)

  • Manzari MT et al (2021) Targeted drug delivery strategies for precision medicines. Nat Rev Mater 6(4):351–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J et al (2021) Overcoming multidrug resistance by intracellular drug release and inhibiting p-glycoprotein efflux in breast cancer. Biomed Pharmacother 134:111108

    Article  CAS  PubMed  Google Scholar 

  • Mao X et al (2023) Tissue resident memory T cells are enriched and dysfunctional in effusion of patients with malignant tumor. J Cancer 14(7):1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehraj U et al (2021) Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87:147–158

    Article  PubMed  Google Scholar 

  • Meng W et al (2020) Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Delivery 27(1):585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metawea OR et al (2021) A novel ‘smart’PNIPAM-based copolymer for breast cancer targeted therapy: synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf, B 202:111694

    Article  CAS  Google Scholar 

  • Metawea OR et al (2023) Folic acid-poly (N-isopropylacrylamide-maltodextrin) nanohydrogels as novel thermo-/pH-responsive polymer for resveratrol breast cancer targeted therapy. Eur Polymer J 182:111721

    Article  CAS  Google Scholar 

  • Mi P (2020) Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 10(10):4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitran R-A, Matei C, Berger D (2016) Correlation of mesoporous silica structural and morphological features with theoretical three-parameter model for drug release kinetics. The Journal of Physical Chemistry C 120(51):29202–29209

    Article  CAS  Google Scholar 

  • Mo Y et al (2019) Quick-responsive polymer-based thermosensitive liposomes for controlled doxorubicin release and chemotherapy. ACS Biomater Sci Eng 5(5):2316–2329

    Article  CAS  PubMed  Google Scholar 

  • Moghadam NCZ et al (2022) Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng 45(7):1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Mohamed S et al (2020) Novel lipid–polymer hybrid nanoparticles incorporated in thermosensitive in situ gel for intranasal delivery of terbutaline sulphate. J Microencapsul 37(8):577–594

    Article  CAS  PubMed  Google Scholar 

  • Motornov M et al (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Article  CAS  Google Scholar 

  • Mu Y et al (2021) Advances in pH-responsive drug delivery systems. OpenNano 5:100031

    Article  Google Scholar 

  • Murugan B et al (2021) Smart stimuli-responsive nanocarriers for the cancer therapy–nanomedicine. Nanotechnol Rev 10(1):933–953

    Article  CAS  Google Scholar 

  • Mustafa RA et al (2023) A pH/temperature responsive nanocomposite for chemo-photothermal synergistic cancer therapy. Smart Materials in Medicine 4:199–211

    Article  Google Scholar 

  • Namazi H, Pooresmaeil M, Salehi R (2023) Construction of a new dual-drug delivery system based on stimuli-responsive co-polymer functionalized D-mannose for chemotherapy of breast cancer. Eur Polymer J 188:111958

    Article  CAS  Google Scholar 

  • Orrantia-Borunda E, Aguilar LEA, Valdespino CAR (2022) Nanomaterials for breast cancer. Exon Publications 149–162

  • Ortega A et al (2023) Thermosensitive and mucoadhesive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan for the treatment of oral squamous cell carcinoma. Drug Deliv Transl Res 13(2):642–657

    Article  CAS  PubMed  Google Scholar 

  • Oshiro-Júnior JA et al (2020) Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 27(15):2494–2513

    Article  PubMed  Google Scholar 

  • Pan L et al (2022) Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells. Pharmacol Res 181:106270

    Article  CAS  PubMed  Google Scholar 

  • Paris JL, Baeza A, Vallet-Regí M (2019) Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv 16(10):1095–1112

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis C, Choy EH, Buch MH (2020) Transforming clinical trials in rheumatology: towards patient-centric precision medicine. Nat Rev Rheumatol 16(10):590–599

    Article  PubMed  Google Scholar 

  • Priya S, Desai VM, Singhvi G (2022) Surface modification of lipid-based nanocarriers: a potential approach to enhance targeted drug delivery. ACS Omega 8(1):74–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan A et al (2020) Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. Pharmacogenomics J 20(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Revia RA, Stephen ZR, Zhang M (2019) Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res 52(6):1496–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio IT et al (2020) Missed opportunities and challenges for surgical breast cancer research in the era of personalized cancer treatment. Eur J Surg Oncol 46(4):501–503

    Article  PubMed  Google Scholar 

  • Rudra S et al (2021) Radiation-induced brachial plexopathy in patients with breast cancer treated with comprehensive adjuvant radiation therapy. Adv Radiat Oncol 6(1):100602

    Article  PubMed  Google Scholar 

  • Saadh MJ et al (2023) The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: bioresponisive nanostructures, phototherapy and targeted drug delivery. Environ Res 233:116490

    Article  CAS  PubMed  Google Scholar 

  • Sam R et al (2023) Different applications of temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol 28(5):492–500

    Article  CAS  PubMed  Google Scholar 

  • Santhosh S, Nanjan M, Chandrasekar M (2019) Ovarian solid tumors: current treatment and recent developments using stimuli-responsive polymers: a systemic review. Journal of Drug Delivery Science and Technology 51:621–628

    Article  CAS  Google Scholar 

  • Saravanakumar K et al (2019) Emerging strategies in stimuli-responsive nanocarriers as the drug delivery system for enhanced cancer therapy. Curr Pharm Des 25(24):2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Satpathy M et al (2019) Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles. Theranostics 9(3):778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S et al (2022) Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloid and Interface Science Communications 46:100570

    Article  CAS  Google Scholar 

  • Shah RA, Frazar EM, Hilt JZ (2020) Recent developments in stimuli responsive nanomaterials and their bionanotechnology applications. Curr Opin Chem Eng 30:103–111

    Article  PubMed  Google Scholar 

  • Shahriari M et al (2019) Enzyme responsive drug delivery systems in cancer treatment. J Control Release 308:172–189

    Article  CAS  PubMed  Google Scholar 

  • Shariatinia Z, Ziba M (2022) Smart pH-responsive drug release systems based on functionalized chitosan nanocomposite hydrogels. Surfaces and Interfaces 29:101739

    Article  CAS  Google Scholar 

  • Sharifi M et al (2020) Combined chemo-magnetic field-photothermal breast cancer therapy based on porous magnetite nanospheres. Sci Rep 10(1):5925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi M et al (2022) An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 14(12):2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui SY et al (2021) IoMT cloud-based intelligent prediction of breast cancer stages empowered with deep learning. IEEE Access 9:146478–146491

    Article  Google Scholar 

  • Singh R et al (2022) Smart nanomaterials for cancer diagnosis and treatment. Nano Convergence 9(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobczak M (2022) Enzyme-responsive hydrogels as potential drug delivery systems—state of knowledge and future prospects. Int J Mol Sci 23(8):4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y et al (2022) Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin Chem Lett 33(4):1705–1717

    Article  CAS  Google Scholar 

  • Song X-Q, Li Q, Zhang J (2023) A double-edged sword: DLG5 in diseases. Biomed Pharmacother 162:114611

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan D et al (2022) Isolation of exopolysaccharide, galactan from marine Vibrio sp BPM 19to template the synthesis of antimicrobial platinum nanocomposite. Process Biochemistry 122:267–274

    Article  CAS  Google Scholar 

  • Souto EP et al (2022) In vivo modeling of human breast cancer using cell line and patient-derived xenografts. J Mammary Gland Biol Neoplasia 27(2):211–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H et al (2018) Stimuli-responsive nanoparticles based on co-assembly of naturally-occurring biomacromolecules for in vitro photodynamic therapy. Colloids Surf, A 538:795–801

    Article  CAS  Google Scholar 

  • Sun Q et al (2019) Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 223:119473

    Article  CAS  PubMed  Google Scholar 

  • Tian Z et al (2022) Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host & Microbe 30(10):1450-1463. e8

    Article  CAS  Google Scholar 

  • Tokumaru Y, Joyce D, Takabe K (2020) Current status and limitations of immunotherapy for breast cancer. Surgery 167(3):628–630

    Article  PubMed  Google Scholar 

  • Udofot O et al (2016) Pharmacokinetic, biodistribution and therapeutic efficacy of 5-fluorouracil-loaded pH-sensitive PEGylated liposomal nanoparticles in HCT-116 tumor bearing mouse. Journal of Nature and Science 2(1)

  • Velsankar K et al (2023) Bio-derived synthesis of MgO nanoparticles and their anticancer and hemolytic bioactivities. Biocatal Agric Biotechnol 53:102870

    Article  CAS  Google Scholar 

  • Wang D et al (2006) Pharmacokinetic and biodistribution studies of a bone-targeting drug delivery system based on N-(2-hydroxypropyl) methacrylamide copolymers. Mol Pharm 3(6):717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2020) Lineage reprogramming of fibroblasts into induced cardiac progenitor cells by CRISPR/Cas9-based transcriptional activators. Acta Pharmaceutica Sinica B 10(2):313–326

    Article  PubMed  Google Scholar 

  • Wang Y et al (2023) Ultra-small Au/Pt NCs@ GOX clusterzyme for enhancing cascade catalytic antibiofilm effect against F nucleatum-induced periodontitis. Chemical Engineering Journal 466:143292

    Article  CAS  Google Scholar 

  • Wen L et al (2015) MiR-26a enhances the sensitivity of gastric cancer cells to cisplatin by targeting NRAS and E2F2. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association 21(5):313

    Article  PubMed  Google Scholar 

  • Xie J et al (2023) A Novel NQO1 enzyme-responsive polyurethane nanocarrier for redox-triggered intracellular drug release. Biomacromol 24(5):2225–2236

    Article  CAS  Google Scholar 

  • Yamamoto E et al (2018) A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography. Int J Pharm 536(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki CM et al (2021) Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nat Commun 12(1):3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2021) Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 179:114004

    Article  CAS  PubMed  Google Scholar 

  • Yang G et al (2022) Self-adaptive nanomaterials for rational drug delivery in cancer therapy. Accounts of Materials Research 3(12):1232–1247

    Article  CAS  Google Scholar 

  • Yao P et al (2023) Cyclic RGD-functionalized pH/ROS dual-responsive nanoparticle for targeted breast cancer therapy. Pharmaceutics 15(7):1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon C (2019) Advances in biomimetic stimuli responsive soft grippers. Nano Convergence 6(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2020) Homotypic targeting delivery of siRNA with artificial cancer cells. Adv Healthcare Mater 9(9):1900772

    Article  CAS  Google Scholar 

  • Zhang H et al (2022a) Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 17(5):473–482

    Article  CAS  Google Scholar 

  • Zhang Z et al (2022b) Endoscope image mosaic based on pyramid ORB. Biomed Signal Process Control 71:103261

    Article  Google Scholar 

  • Zhang X et al (2022d) Light-responsive nanomaterials for cancer therapy. Engineering 13:18–30

    Article  CAS  Google Scholar 

  • Zhang C et al (2023) Strategic design of conquering hypoxia in tumor for advanced photodynamic therapy. Advanced Healthcare Materials 2300530

  • Zhang M et al (2023) An magnetic-targeting nano-diagnosis and treatment platform for TNBC. Breast Cancer: Targets and Therapy 101–119

  • Zhang J et al (2022e) Calcium homeostasis in Parkinson’s disease: from pathology to treatment. Neurosci Bull 38(10):1267–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Srivastava R, Misra R (2007) Core− shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 23(11):6342–6351

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gao A, Sun C (2022c) Tumor pH-responsive nanocarriers with light-activatable drug release for chemo-photodynamic therapy of breast cancer. Front Chem 10:905645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y et al (2019) In vitro neutralization of autocrine IL-10 affects Op18/stathmin signaling in non-small cell lung cancer cells. Oncol Rep 41(1):501–511

    CAS  PubMed  Google Scholar 

  • Zhao Z et al (2020) Targeting strategies for tissue-specific drug delivery. Cell 181(1):151–167

    Article  CAS  PubMed  Google Scholar 

  • Zhao H et al (2023) Ursolic acid suppresses colorectal cancer by down-regulation of Wnt/β-catenin signaling pathway activity. J Agric Food Chem 71(9):3981–3993

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2023) The ferroptosis signature predicts the prognosis and immune microenvironment of nasopharyngeal carcinoma. Sci Rep 13(1):1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Wang H, Li Y (2018) Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics 8(4):1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2012) The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2(3):302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y et al (2021) Deep learning-based predictive identification of neural stem cell differentiation. Nat Commun 12(1):2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Q et al (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25(2):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo T et al (2019) Coadministration of chemotherapy and PI3K/Akt pathway treatment with multistage acidity/CathB enzyme-responsive nanocarriers for inhibiting the metastasis of breast cancer. Biomaterials Science 7(12):5054–5067

    Article  CAS  PubMed  Google Scholar 

  • Zylberberg C, Matosevic S (2016) Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery 23(9):3319–3329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, KSA, for funding this work through a large research group program under grant number RGP. 2/531/44.

Author information

Authors and Affiliations

Authors

Contributions

Israa Habeeb Naser contributed to the conceptualization of the review paper, conducted literature research, and participated in the writing and editing of the manuscript.

Muhaned Zaid contributed to the design and organization of the review paper, provided critical insights into the topic, and contributed to the writing and revision of the manuscript.

Eyhab Ali contributed to the selection and analysis of relevant research articles, participated in the writing and editing process, and provided expertise in the field of breast cancer treatment.

Hayder Imad Jabar contributed to the overall organization and structure of the review paper, conducted data analysis, and contributed to the writing and revision of the manuscript.

Anfal Nabeel Mustafa contributed to the literature review, data interpretation, and drafting of specific sections of the manuscript, as well as provided critical feedback and revisions.

Mahmood Hasen Shuhata Alubiady contributed to the critical evaluation of scientific literature, data analysis, and manuscript writing, and provided expertise in the area of stimuli-responsive drug delivery systems.

Montather F. Ramadan contributed to the conceptualization of the review paper, provided guidance on the methodology and analysis, and participated in the writing and revision of the manuscript.

Khursheed Muzammil contributed to the critical evaluation of scientific literature and participated in the revision of the manuscript.

Reem Mohsin Khalaf contributed to the literature research, data collection, and analysis, and participated in the writing and editing of the manuscript.

Sarah Salah Jalal contributed to the critical review of relevant literature, data interpretation, and manuscript writing, and provided expertise in the field of breast cancer treatment.

Ahmed Hussien Alawadi contributed to the overall coordination and supervision of the project, provided guidance in conceptualizing the review paper, and participated in the writing and revision process.

Ali Alsalamy contributed to the conceptualization of the review paper, provided guidance on the methodology and analysis, and participated in the writing and revision of the manuscript.

All authors have reviewed the final version of the manuscript and have given their approval for submission. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Ali Alsalamy.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naser, I.H., Zaid, M., Ali, E. et al. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. Naunyn-Schmiedeberg's Arch Pharmacol (2023). https://doi.org/10.1007/s00210-023-02885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-023-02885-9

Keywords

Navigation