Skip to main content

Advertisement

Log in

Proteomic analysis of NME1/NDPK A null mouse liver: evidence for a post-translational regulation of annexin IV and EF-1Bα

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

NME/NDPK family proteins are involved in the control of intracellular nucleotide homeostasis as well as in both physiological and pathological cellular processes, such as proliferation, differentiation, development, apoptosis, and metastasis dissemination, through mechanisms still largely unknown. One family member, NME1/NDPK-A, is a metastasis suppressor, yet the primary physiological functions of this protein are still missing. The purpose of this study was to identify new NME1/NDPK-A-dependent biological functions and pathways regulated by this gene in the liver. We analyzed the proteomes of wild-type and transgenic NME1-null mouse livers by combining two-dimensional gel electrophoresis and mass spectrometry (matrix-assisted laser desorption/ionization time of flight and liquid chromatography–tandem mass spectrometry). We found that the levels of three proteins, namely, phenylalanine hydroxylase, annexin IV, and elongation factor 1 Bα (EF-1Bα), were strongly reduced in the cytosolic fraction of NME1−/− mouse livers when compared to the wild type. This was confirmed by immunoblotting analysis. No concomitant reduction in the corresponding messenger RNAs or of total protein level was observed, however, suggesting that NME1 controls annexin IV and EF-1Bα amounts by post-translational mechanisms. NME1 deletion induced a change in the subcellular location of annexin IV in hepatocytes resulting in enrichment of this protein at the plasma membrane. We also observed a redistribution of EF-1Bα in NME1−/− hepatocytes to an intracytoplasmic compartment that colocalized with a marker of the reticulum endoplasmic. Finally, we found reduced expression of annexin IV coincident with decreased NME1 expression in a panel of different carcinoma cell lines. Taken together, our data suggest for the first time that NME1 might regulate the subcellular trafficking of annexin IV and EF-1Bα. The potential role of these proteins in metastatic dissemination is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NDPK:

Nucleoside diphosphate kinase

2-DE:

Two-dimensional gel electrophoresis

CCB:

Colloidal Coomassie blue

PMF:

Peptide mass fingerprinting

LC-MS/MS:

Liquid chromatography–tandem mass spectrometry

ER:

Endoplasmic reticulum

References

  • Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, Collins C, Gray JW, Diebold J, Demetrick DJ, Lee JM (2002) Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31:301–305

    PubMed  CAS  Google Scholar 

  • Bandorowicz-Pikula J, Awasthi YC (1997) Interaction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium- and membrane-binding proteins is regulated. FEBS Lett 409:300–306

    Article  PubMed  CAS  Google Scholar 

  • Bandorowicz-Pikula J, Buchet R, Pikula S (2001) Annexins as nucleotide-binding proteins: facts and speculations. Bioessays 23:170–178

    Article  PubMed  CAS  Google Scholar 

  • Baughman C, Morin-Leisk J, Lee T (2008) Nucleoside diphosphate kinase B (NDKB) scaffolds endoplasmic reticulum membranes in vitro. Exp Cell Res 314:2702–2714

    Article  PubMed  CAS  Google Scholar 

  • Boissan M, Wendum D, Arnaud-Dabernat S, Munier A, Debray M, Lascu I, Daniel JY, Lacombe ML (2005) Increased lung metastasis in transgenic NM23-Null/SV40 mice with hepatocellular carcinoma. J Natl Cancer Inst 97:836–845

    Article  PubMed  CAS  Google Scholar 

  • Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 329:51–62

    Article  PubMed  CAS  Google Scholar 

  • Boissan M, De Wever O, Lizarraga F, Wendum D, Poincloux R, Chignard N, Desbois-Mouthon C, Dufour S, Nawrocki-Raby B, Birembaut P, Bracke M, Chavrier P, Gespach C, Lacombe ML (2010) Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res 70:7710–7722

    Article  PubMed  CAS  Google Scholar 

  • Bruneel A, Labas V, Mailloux A, Sharma S, Royer N, Vinh J, Pernet P, Vaubourdolle M, Baudin B (2005) Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. Proteomics 5:3876–3884

    Article  PubMed  CAS  Google Scholar 

  • Dammai V, Adryan B, Lavenburg KR, Hsu T (2003) Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 17:2812–2824

    Article  PubMed  CAS  Google Scholar 

  • Della Gaspera B, Braut-Boucher F, Bomsel M, Chatelet F, Guguen-Guillouzo C, Font J, Weinman J, Weinman S (2001) Annexin expressions are temporally and spatially regulated during rat hepatocyte differentiation. Dev Dyn 222:206–217

    Article  PubMed  CAS  Google Scholar 

  • Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25:58–62

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Carpenter B, Main LC, Telfer C, Murray GI (2008) Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 98:426–433

    Article  PubMed  CAS  Google Scholar 

  • Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, Segall J, Condeelis J (1996) Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci 109(Pt 11):2705–2714

    PubMed  CAS  Google Scholar 

  • Engel M, Veron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C (1995) A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. Eur J Biochem 234:200–207

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672

    Article  PubMed  CAS  Google Scholar 

  • Fournier HN, Dupe-Manet S, Bouvard D, Lacombe ML, Marie C, Block MR, Albiges-Rizo C (2002) Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha ) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem 277:20895–20902

    Article  PubMed  CAS  Google Scholar 

  • Gallagher BC, Parrott KA, Szabo G, de S Otero A (2003) Receptor activation regulates cortical, but not vesicular localization of NDP kinase. J Cell Sci 116:3239–3250

    Article  PubMed  CAS  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  PubMed  CAS  Google Scholar 

  • Han EK, Tahir SK, Cherian SP, Collins N, Ng SC (2000) Modulation of paclitaxel resistance by annexin IV in human cancer cell lines. Br J Cancer 83:83–88

    Article  PubMed  CAS  Google Scholar 

  • Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS (2002) Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 277:32389–32399

    Article  PubMed  CAS  Google Scholar 

  • Hufton SE, Jennings IG, Cotton RG (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem J 311(Pt 2):353–366

    PubMed  CAS  Google Scholar 

  • Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M (2004) Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 320:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Joseph P, Lei YX, Whong WZ, Ong TM (2002) Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene. J Biol Chem 277:6131–6136

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Seong HA, Ha H (2008) Direct interaction between NM23-H1 and macrophage migration inhibitory factor (MIF) is critical for alleviation of MIF-mediated suppression of p53 activity. J Biol Chem 283:32669–32679

    Article  PubMed  CAS  Google Scholar 

  • Kaetzel DM, Zhang Q, Yang M, McCorkle JR, Ma D, Craven RJ (2006) Potential roles of 3′–5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr 38:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kapetanovich L, Baughman C, Lee TH (2005) Nm23H2 facilitates coat protein complex II assembly and endoplasmic reticulum export in mammalian cells. Mol Biol Cell 16:835–848

    Article  PubMed  CAS  Google Scholar 

  • Kim A, Enomoto T, Serada S, Ueda Y, Takahashi T, Ripley B, Miyatake T, Fujita M, Lee CM, Morimoto K, Fujimoto M, Kimura T, Naka T (2009) Enhanced expression of Annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin. Int J Cancer 125:2316–2322

    Article  PubMed  CAS  Google Scholar 

  • Krishnan KS, Rikhy R, Rao S, Shivalkar M, Mosko M, Narayanan R, Etter P, Estes PS, Ramaswami M (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30:197–210

    Article  PubMed  CAS  Google Scholar 

  • Le Moguen K, Lincet H, Deslandes E, Hubert-Roux M, Lange C, Poulain L, Gauduchon P, Baudin B (2006) Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1-R10. Proteomics 6:5183–5192

    Article  PubMed  Google Scholar 

  • Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O (2006) eEF1B: At the dawn of the 21st century. Biochim Biophys Acta 1759:13–31

    PubMed  Google Scholar 

  • Liu L, Wang S, Zhang Q, Ding Y (2008) Identification of potential genes/proteins regulated by Tiam1 in colorectal cancer by microarray analysis and proteome analysis. Cell Biol Int 32:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Massey D, Traverso V, Maroux S (1991a) Lipocortin IV is a basolateral cytoskeleton constituent of rabbit enterocytes. J Biol Chem 266:3125–3130

    PubMed  CAS  Google Scholar 

  • Massey D, Traverso V, Rigal A, Maroux S (1991b) Cellular and subcellular localization of annexin IV in rabbit intestinal epithelium, pancreas and liver. Biol Cell 73:151–156

    Article  PubMed  CAS  Google Scholar 

  • Masuishi Y, Arakawa N, Kawasaki H, Miyagi E, Hirahara F, Hirano H (2011) Wild-type p53 enhances annexin IV gene expression in ovarian clear cell adenocarcinoma. Febs J. doi:10.1111/j.1742-4658.2011.08059.x.

  • Mayran N, Traverso V, Maroux S, Massey-Harroche D (1996) Cellular and subcellular localizations of annexins I, IV, and VI in lung epithelia. Am J Physiol 270:L863–L871

    PubMed  CAS  Google Scholar 

  • McDonald JD, Bode VC, Dove WF, Shedlovsky A (1990) Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci USA 87:1965–1967

    Article  PubMed  CAS  Google Scholar 

  • Melki R, Lascu I, Carlier MF, Veron M (1992) Nucleoside diphosphate kinase does not directly interact with tubulin nor microtubules. Biochem Biophys Res Commun 187:65–72

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KA, Szabo G, de S Otero A (2009) Direct binding of cytosolic NDP kinases to membrane lipids is regulated by nucleotides. Biochim Biophys Acta 1793:469–476

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Meneses PI, Knight JS, Lan K, Kaul R, Verma SC, Robertson ES (2008a) Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int J Cancer 123:500–510

    Article  PubMed  CAS  Google Scholar 

  • Murakami M, Meneses PI, Lan K, Robertson ES (2008b) The suppressor of metastasis Nm23-H1 interacts with the Cdc42 Rho family member and the pleckstrin homology domain of oncoprotein Dbl-1 to suppress cell migration. Cancer Biol Ther 7:677–688

    Article  PubMed  CAS  Google Scholar 

  • Nallamothu G, Woolworth JA, Dammai V, Hsu T (2008) Awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol Cell Biol 28:1964–1973

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta CV, Lerner RS, Stephens SB, Dodd RD, Pyhtila B (2005) Pathways for compartmentalizing protein synthesis in eukaryotic cells: the template-partitioning model. Biochem Cell Biol 83:687–695

    Article  PubMed  CAS  Google Scholar 

  • Ong LL, Lin PC, Zhang X, Chia SM, Yu H (2006) Kinectin-dependent assembly of translation elongation factor-1 complex on endoplasmic reticulum regulates protein synthesis. J Biol Chem 281:33621–33634

    Article  PubMed  CAS  Google Scholar 

  • Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98:4385–4390

    Article  PubMed  CAS  Google Scholar 

  • Piljic A, Schultz C (2006) Annexin A4 self-association modulates general membrane protein mobility in living cells. Mol Biol Cell 17:3318–3328

    Article  PubMed  CAS  Google Scholar 

  • Postel EH (2003) Multiple biochemical activities of NM23/NDP kinase in gene regulation. J Bioenerg Biomembr 35:31–40

    Article  PubMed  CAS  Google Scholar 

  • Rescher U, Gerke V (2004) Annexins—unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  PubMed  CAS  Google Scholar 

  • Salerno M, Palmieri D, Bouadis A, Halverson D, Steeg PS (2005) Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol 25:1379–1388

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR (1995) Whatever happened to PKU? Clin Biochem 28:137–144

    Article  PubMed  CAS  Google Scholar 

  • Seong HA, Jung H, Ha H (2007) NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem 282:12075–12096

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Skrahina T, Piljic A, Schultz C (2008) Heterogeneity and timing of translocation and membrane-mediated assembly of different annexins. Exp Cell Res 314:1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204

    Article  PubMed  CAS  Google Scholar 

  • Steeg PS, Palmieri D, Ouatas T, Salerno M (2003) Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 190:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH, Kahn CR (2001) Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61:2071–2079

    PubMed  CAS  Google Scholar 

  • Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A (2011) Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma. Eur J Clin Invest 41:269–276

    Article  PubMed  CAS  Google Scholar 

  • Xin W, Rhodes DR, Ingold C, Chinnaiyan AM, Rubin MA (2003) Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol 162:255–261

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, Kahn CR (1999) Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci USA 96:14911–14918

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U, Balabanov S, Giebel J, Teller S, Junker H, Schmoll D, Protzel C, Scharf C, Kleist B, Walther R (2004) Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett 209:111–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Drs. J. Dijk and M. Kaetzel for the gift of anti-EF-1Bα and anti-annexin IV antibodies, respectively, to Dr. V. Barbu for advice on real-time PCR, and to Dr. N. Chignard for helpful comments. This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université Pierre et Marie Curie (UPMC), and grants (to MLL) from the Groupement des Entreprises Françaises contre le Cancer (GEFLUC) and from the Association pour la Recherche contre le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Boissan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Representative 2-DE gels of NME1+/+ (left) and NME1−/− (right) mouse liver cytosolic fractions obtained in the broad range pH 3.0–10.0 (JPEG 84 kb)

High resolution image (TIFF 2042 kb)

Supplementary Figure 2a

Details (triplicate enlarged areas) of the six differentially modulated protein spots in 2D gels shown in Fig. 1 from NME1+/+ and NME1−/− mouse liver cytosolic fractions. a Spots 1 and 2 (JPEG 64 kb)

High resolution image (TIFF 2042 kb)

Supplementary Figure 2b

Details (triplicate enlarged areas) of the six differentially modulated protein spots in 2D gels shown in Fig. 1 from NME1+/+ and NME1−/− mouse liver cytosolic fractions. b Spots 3–6 (JPEG 69 kb)

High resolution image (TIFF 2042 kb)

Supplementary Figure 3

MS/MS spectrum and corresponding sequence interpretation obtained after the fragmentation of a doubly-charged tryptic peptide (m/Z = 674.37; sequence SIQADGLVWGSSK) derived from spot 2 (EF-1Bα). Surrounded values correspond to matching fragmentation peptide m/Z values. “b1 to b13”, N-terminal peptide fragments; “y1 to y13, C-terminal peptide fragments (JPEG 140 kb)

High resolution image (TIFF 741 kb)

Supplementary Figure 4

Plasma concentrations of phenylalanine (μM) were measured after intraperitoneal injection of 1 mg of L-phenylalanine per gram of body weight in NME1+/+ (empty circle) and NME1−/− (filled circle) mice. Plasma concentrations are the mean±SEM from seven mice per group (JPEG 17 kb)

High resolution image (TIFF 454 kb)

Supplementary Figure 5

NME1 expression correlates positively with annexin IV expression in a panel of independent human carcinoma cell lines. a Immunoblot analysis of lysates from C-100 and H1-177 cell lines probed for NME1, annexin IV, and actin proteins with appropriate antibodies. b Western blotting of extracts of human colon (HCT8/S11) and liver (HepG2, PLC/PRF/5, Mahlavu) cancer cell lines with antibodies specific for NME1, annexin IV, and actin. c Western blotting of breast carcinoma cell lines with antibodies specific for NME1, annexin IV and actin (JPEG 34 kb)

High resolution image (TIFF 1455 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneel, A., Wendum, D., Labas, V. et al. Proteomic analysis of NME1/NDPK A null mouse liver: evidence for a post-translational regulation of annexin IV and EF-1Bα. Naunyn-Schmiedeberg's Arch Pharmacol 384, 407–419 (2011). https://doi.org/10.1007/s00210-011-0639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0639-5

Keywords

Navigation