Skip to main content
Log in

Potential roles of 3′-5′exonuclease activity of NM23-H1 in DNA repair and malignant progression

  • Original Paper
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

NM23-H1 is a metastasis suppressor protein that exhibits 3′-5′exonuclease activity in vitro. As 3′-5′exonucleases are generally required for maintenance of genome integrity, this activity represents a plausible candidate mediator of the metastasis suppressor properties of the NM23-H1 molecule. Consistent with an antimutator function, ablation of the yeast NM23 homolog, YNK1, results in increased mutation rates following exposure to UV irradiation and exposure to the DNA damaging agents etoposide, cisplatin, and MMS. In human cells, a DNA repair function is further suggested by increased NM23-H1 expression and nuclear translocation following DNA damage. Also, forced expression of NM23-H1 in NM23-deficient and metastatic cell lines results in coordinate downregulation of multiple DNA repair genes, possibly reflecting genomic instability associated with the NM23-deficient state. To assess the relevance of the 3′-5′exonuclease activity of NM23-H1 to its antimutator and metastasis suppressor functions, a panel of mutants harboring defects in the 3′-5′exonuclease and other enzymatic activities of the molecule (NDPK, histidine kinase) have been expressed by stable transfection in the melanoma cell line, 1205Lu. Pilot in vivo metastasis assays indicate 1205Lu cells are highly responsive to the metastasis suppressor effects of NM23-H1, thus providing a valuable model for measuring the extent to which the nuclease function opposes metastasis and metastatic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnaud-Dabernat S, Bourbon PM, Dierich A, Le Meur M, Daniel J-Y (2003) J Bioenerg Biomembr 35:19–30

    Article  CAS  Google Scholar 

  • Berberich SJ, Postel EH (1995) Oncogene 10:2343–2347

    CAS  Google Scholar 

  • Craven RJ, Greenwell PW, Dominska M, Petes TD (2002) Genetics 161:493–507

    CAS  Google Scholar 

  • El Deiry WS (2002) Cancer Biol Ther 1:490–491

    Google Scholar 

  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Cell 112:659–672

    Article  CAS  Google Scholar 

  • Ferguson AW, Flatow U, MacDonald NJ, Larminat F, Bohr VA, Steeg PS (1996) Cancer Res 56:2931–2935

    CAS  Google Scholar 

  • Ford JM (2005) MutatRes 577:195–202

    CAS  Google Scholar 

  • Fukuchi T, Nikawa J, Kimura N, and Watanabe K (1993) Gene 129:141–146

    Article  CAS  Google Scholar 

  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Mol Biol Cell 12:2987–3003

    CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Nature 415:141–147

    Article  CAS  Google Scholar 

  • Glaab WE, Tindall KR (1997) Carcinogenesis 18:1–8

    Article  CAS  Google Scholar 

  • Grunstein M (1990) Annu Rev Cell Biol 6:643–678

    Article  CAS  Google Scholar 

  • Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS (2002) J Biol Chem 277:32389–32399

    Article  CAS  Google Scholar 

  • Lu Q, Zhang X, Almaula N, Mathews CK, Inouye M (1995) J Mol Biol 254:337–341

    Article  CAS  Google Scholar 

  • Ma D, McCorkle JR, and Kaetzel DM (2004) J Biol Chem 279:18073–18084

    Article  CAS  Google Scholar 

  • Ma D, Xing Z, Liu B, Pedigo N, Zimmer S, Bai Z, Postel E, Kaetzel DM (2002) J Biol Chem 277:1560–1567

    Article  CAS  Google Scholar 

  • MacDonald NJ, De La Rosa A, Benedict MA, Freije JM, Krutsch H, Steeg PS (1993) J Biol Chem 268:25780–25789

    CAS  Google Scholar 

  • Mankovitz R, Buchwald M, Baker RM (1974) Cell 3:221–226

    Article  CAS  Google Scholar 

  • Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, Shen X (2004) Cell 119:767–775

    Article  CAS  Google Scholar 

  • Postel E, Abramczyk BM, Levit MN, Kyin S (2001) Proc Natl Acad Sci USA 97:14194–14199

    Article  Google Scholar 

  • Postel EH (1999) J Biol Chem 274:22821–22829

    Article  CAS  Google Scholar 

  • Rosen EM, Fan S, Pestell RG, Goldberg ID (2003) J Cell Physiol 196:19–41

    Article  CAS  Google Scholar 

  • Rossman TG, Goncharova EI, Nadas A (1995) Mutat Res 328:21–30

    CAS  Google Scholar 

  • Shevde LA, Welch DR (2003) Cancer Lett 198:1–20

    Article  CAS  Google Scholar 

  • Shevelev IV, Hübscher U (2002) Nat Rev Mol Cell Biol 3:1–12

    Article  CAS  Google Scholar 

  • Steeg PS, Bevilacqua G, Kopper L, Thorgeirisson UP, Talmadge JE, Liotta LA, Sobel ME (1988) J Natl Cancer Inst 80:200–204

    Article  CAS  Google Scholar 

  • Wagner PD, Steeg PS, Vu ND (1997) Proc Natl Acad SciUSA 94:9000–9005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kaetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaetzel, D.M., Zhang, Q., Yang, M. et al. Potential roles of 3′-5′exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr 38, 163–167 (2006). https://doi.org/10.1007/s10863-006-9040-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-006-9040-3

Keywords

Navigation