Skip to main content

Advertisement

Log in

Electrophysiological profile of propiverine – relationship to cardiac risk

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Drugs that prolong the QT interval by blocking human ether-a-go-go (HERG) channels may enhance the risk of ventricular arrhythmia. The spasmolytic drug propiverine is widely used for the therapy of overactive bladder (OAB). Here, we have investigated the effects of propiverine on cardiac ion channels and action potentials as well as on contractile properties of cardiac tissue, in order to estimate its cardiac safety profile, because other drugs used in this indication had to be withdrawn due to safety reasons. Whole-cell patch clamp technique was used to record the following cardiac ion currents: rapidly and slowly activating delayed rectifier K+ current (IKr, IKs), ultra rapidly activating delayed rectifier K+ current (IKur), inwardly rectifying K+ current IK1, transient outward K+ current (Ito), and L-type Ca2+ current (ICa,L). Action potentials in cardiac tissue biopsies were recorded with conventional microelectrodes. The torsade de pointes screening assay (TDPScreenTM) was used for drug scoring. Propiverine blocked in a concentration-dependent manner HERG channels expressed in HEK293 cells, as well as native IKr current in ventricular myocytes of guinea pig (IC50 values: 10 μM and 1.8 μM respectively). At high concentrations (100 μM), propiverine suppressed IKs. IK1 and the transient outward current Ito and IKur were not affected. In guinea-pig ventricular and human atrial myocytes, propiverine also blocked ICa,L (IC50 values: 34.7 μM and 41.7 μM, respectively) and reduced force of contraction. Despite block of IKr, action potential duration was not prolonged in guinea-pig and human ventricular tissue, but decreased progressively until excitation failed altogether. Similar effects were observed in dog Purkinje fibers. Propiverine obtained a low score in the TDPScreenTM. In conclusion, in vitro and in vivo studies of propiverine do not provide evidence for an enhanced cardiovascular safety risk. We propose that lack of torsadogenic risk of propiverine is related to enhancement of repolarization reserve by block of ICa,L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amos GJ, Wettwer E, Metzger F, Li Q, Himmel HM, Ravens U (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491:31–50

    PubMed  CAS  Google Scholar 

  • Atwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979) The steady state TTX-sensitive (“window”) sodium current in cardiac purkinje fibres. Pflugers Arch 379:137–142

    Article  Google Scholar 

  • Bett GC, Morales MJ, Beahm DL, Duffey ME, Rasmusson RL (2006) Ancillary subunits and stimulation frequency determine the potency of chromanol 293B for the KCNQ1 potassium channel. J Physiol 576:755–767

    Article  PubMed  CAS  Google Scholar 

  • Biliczki P, Virag L, Iost N, Papp JG, Varro A (2002) Interaction of different potassium channels in cardiac repolarization in dog ventricular preparations: role of repolarization reserve. Br J Pharmacol 137:361–368

    Article  PubMed  CAS  Google Scholar 

  • Camm AJ, Janse MJ, Roden DM, Rosen MR, Cinca J, Cobbe SM (2000) Congenital and acquired long QT syndrome. Eur Heart J 21:1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Cavero I, Crumb W (2005) ICH S7B draft guideline on the non-clinical strategy for testing delayed cardiac repolarization risk of drugs: a critical analysis. Expert Opin Drug Saf 4:509–530

    Article  PubMed  Google Scholar 

  • Champeroux P, Viaud K, El Amrani AI, Fowler JS, Martel E, Le Guennec JY, Richard S (2005) Prediction of the risk of Torsade de Pointes using the model of isolated canine Purkinje fibres. Br J Pharmacol 144:376–385

    Article  PubMed  CAS  Google Scholar 

  • Christ T, Wettwer E, Ravens U (2005) Risperidone-induced action potential prolongation is attenuated by increased repolarization reserve due to concomitant block of I(Ca,L). Naunyn Schmiedebergs Arch Pharmacol 371:393–400

    Article  PubMed  CAS  Google Scholar 

  • Christ T, Wust M, Matthes J, Janchen M, Jurgens S, Herzig S, Wettwer E, Dobrev D, Matschke K, Mebs D, Ravens U (2004) An aqueous extract of the marine sponge Ectyoplasia ferox stimulates L-type Ca2+-current by direct interaction with the Cav1.2 subunit. Naunyn Schmiedebergs Arch Pharmacol 370:474–483

    Article  PubMed  CAS  Google Scholar 

  • Connolly MJ, Astridge PS, White EG, Morley CA, Cowan JC (1991) Torsades de pointes ventricular tachycardia and terodiline. Lancet 338:344–345

    Article  PubMed  CAS  Google Scholar 

  • Dmochowski R, Staskin DR (2005) The QT interval and antimuscarinic drugs. Curr Urol Rep 6:405–409

    Article  PubMed  Google Scholar 

  • Dorschner W, Stolzenburg JU, Griebenow R, Halaska M, Schubert G, Mürtz G, Frank M, Wieners F (2000) Efficacy and cardiac safety of propiverine in elderly patients – A double-blind, placebo-controlled clinical study. Eur Urol 37:702–708

    Article  PubMed  CAS  Google Scholar 

  • Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL et al (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788

    Article  PubMed  CAS  Google Scholar 

  • Gogelein H, Bruggemann A, Gerlach U, Brendel J, Busch AE (2000) Inhibition of IKs channels by HMR 1556. Naunyn Schmiedebergs Arch Pharmacol 362:480–488

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  • Hondeghem LM (2006) Thorough QT/QTc not so thorough: removes torsadogenic predictors from the T-wave, incriminates safe drugs, and misses profibrillatory drugs. J Cardiovasc Electrophysiol 17:337–340

    Article  PubMed  Google Scholar 

  • Hondeghem LM, Carlsson L, Duker G (2001) Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103:2004–2013

    PubMed  CAS  Google Scholar 

  • Jones SE, Ogura T, Shuba LM, McDonald TF (1998) Inhibition of the rapid component of the delayed-rectifier K+ current by therapeutic concentrations of the antispasmodic agent terodiline. Br J Pharmacol 125:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Jones SE, Kasamaki Y, Shuba LM, Ogura T, McCullough JR, McDonald TF (2000) Analysis of the electrophysiological effects of short-term oxybutynin on guinea pig and rabbit ventricular cells. J Cardiovasc Pharmacol 35:334–340

    Article  PubMed  CAS  Google Scholar 

  • Jones SE, Shuba LM, Zhabyeyev P, McCullough JR, McDonald TF (2000a) Differences in the effects of urinary incontinence agents S-oxybutynin and terodiline on cardiac K+ currents and action potentials. Br J Pharmacol 131:245–254

    Article  CAS  Google Scholar 

  • Kang J, Chen XL, Wang H, Ji J, Reynolds W, Lim S, Hendrix J, Rampe D (2004) Cardiac ion channel effects of tolterodine. J Pharmacol Exp Ther 308:935–940

    Article  PubMed  CAS  Google Scholar 

  • Madersbacher H, Mürtz G (2001) Efficacy, tolerability and safety profile of propiverine in the treatment of the overactive bladder (non-neurogenic and neurogenic). World J Urol 19:324–335

    Article  PubMed  CAS  Google Scholar 

  • Martin RL, McDermont JS, Salmen HJ, Palmatier JD, Cox BF, Gintant GA (2004) The utility of HERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J Cardiovasc Pharmacol 43:369–379

    Article  PubMed  CAS  Google Scholar 

  • Martin RL, Su Z, Limberis JT, Palmatier JD, Cowart MD, Cox BF, Gintant GA (2006) In vitro preclinical cardiac assessment of tolterodine and terodiline: Multiple factors predict the clinical experience. J Cardiovasc Pharmacol 48:199–206

    Article  PubMed  CAS  Google Scholar 

  • McLeod AA, Thorogood S, Barnett S (1991) Torsades de pointes complicating treatment with terodiline. BMJ 302:1469

    PubMed  CAS  Google Scholar 

  • Meisel P, Langner S, Siegmund W (1997) In-vitro binding of propiverine hydrochloride and some of its metabolites to serum albumin in man. J Pharm Pharmacol 49:270–272

    PubMed  CAS  Google Scholar 

  • Michel MC, Hedge SS (2006) Treatment of overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol 374:79–85

    Article  PubMed  CAS  Google Scholar 

  • Priori SG, Barhanin J, Hauer RN, Haverkamp W, Jongsma HJ, Kleber AG, McKenna WJ, Roden DM, Rudy Y, Schwartz K, Schwartz PJ, Towbin JA, Wilde A (1999) Genetic and molecular basis of cardiac arrhythmias; impact on clinical management. Study group on molecular basis of arrhythmias of the working group on arrhythmias of the European society of cardiology. Eur Heart J 20:174–195

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, Holzem KM, Delisle BP, Anson BD, Makileski JC, January CT (2006) Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol 149:481–489

    Article  PubMed  CAS  Google Scholar 

  • Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  PubMed  CAS  Google Scholar 

  • Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM (1996) Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation 94:1996–2012

    PubMed  CAS  Google Scholar 

  • Roden DM (1998) Taking the "idio" out of "idiosyncratic": predicting torsades de pointes. Pacing Clin Electrophysiol 21:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  PubMed  CAS  Google Scholar 

  • Siepmann M, Nokhodian A, Thummler D, Kirch W (1998) Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 54:767–771

    Article  PubMed  CAS  Google Scholar 

  • Tamargo J (2000) Drug-induced torsade de pointes: from molecular biology to bedside. Jpn J Pharmacol 83:1–19

    Article  PubMed  CAS  Google Scholar 

  • Thomas SH, Higham PD, Hartigan-Go K, Kamali F, Wood P, Campbell RW, Ford GA (1995) Concentration dependent cardiotoxicity of terodiline in patients treated for urinary incontinence. Br Heart J 74:53–56

    Article  PubMed  CAS  Google Scholar 

  • Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17(Suppl 1):S169–S177

    Article  PubMed  Google Scholar 

  • Wuest M, Hecht J, Christ T, Braeter M, Schoeberl C, Hakenberg OW, Wirth MP, Ravens U (2005) Pharmacodynamics of propiverine and three of its main metabolites on detrusor contraction. Br J Pharmacol 145:608–619

    Article  PubMed  CAS  Google Scholar 

  • Wuest M, Weiss A, Waelbrock M, Braeter M, Kelly LU, Hakenberg OW, Ravens U (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn Schmiedebergs Arch Pharmacol 374:87–97

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    PubMed  CAS  Google Scholar 

  • Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the skillful technical assistance of Annegret Häntzschel, Ulrike Heinrich, Trautlinde Thurm and Sabine Kirsch. We thank the cardiovascular surgeons of the Heart Center Dresden for careful supply of human cardiac tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Ravens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christ, T., Wettwer, E., Wuest, M. et al. Electrophysiological profile of propiverine – relationship to cardiac risk. Naunyn-Schmied Arch Pharmacol 376, 431–440 (2008). https://doi.org/10.1007/s00210-007-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0231-1

Keywords

Navigation