Skip to main content

Advertisement

Log in

Gliadin increases iNOS gene expression in interferon-γ-stimulated RAW 264.7 cells through a mechanism involving NF-κB

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) plays an important role in the pathogenesis of the histological changes seen in coeliac disease. We have investigated the effect of peptic-tryptic digest of gliadin (Pt-G) and gliadin (G) on inducible nitric oxide synthase (iNOS) protein expression in RAW 264.7 macrophages stimulated with interferon-γ (IFN-γ). Pt-G and G enhanced in a concentration and time-dependent manner NO production by IFN-γ-stimulated RAW 264.7 cells. The increase of iNOS protein expression was correlated with NF-κB/DNA binding activity and occurred at transcriptional level. Pyrrolidine dithiocarbamate and N-α-para-tosyl-L-lysine chloromethyl ketone, two known inhibitors of NF-κB activation, decreased significantly NO production and iNOS protein expression as well as NF-κB/DNA binding activity. Our results show that the effect of Pt-G and G on enhancement of iNOS protein expression in IFN-γ-treated RAW 264.7 cells is mainly mediated through NF-κB and suggest that blockage of NF-κB activation reduces enhancing effect of gluten on NO production in inflamed mucosa of coeliac patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Amore A, Emancipator SN, Roccatello D, Gianoglio B, Peruzzi L, Porcellini MG, Piccoli G, Coppo R (1994) Functional consequences of the binding of gliadin to cultured rat mesangial cells: bridging immunoglobulin A to cells and modulation of eicosanoid synthesis and altered cytokine production. Am J Kid Dis 23:290–301

    CAS  PubMed  Google Scholar 

  • Auricchio S, De Ritis G, De Vincenzi M, Magazzù G, Maiuri L, Mancini E (1990) Mannan and oligomers of N-acetylglucosamine protect intestinal mucosa of celiac patients with active disease from in vitro toxicity of gliadins peptides. Gastroenterology 99:973–978

    CAS  PubMed  Google Scholar 

  • Beckett CG, Dell'Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1998) The detection and localization of inducible nitric oxide synthase production in the small intestine of patients with coeliac disease. Eur J Gastroenterol Hepat 11:529–535

    Google Scholar 

  • Beckett CG, Dell'Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1999) Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol 11:529–535

    Google Scholar 

  • Chu SC, Marks-Konczalik J, Wu HP, Banks TC, Moss J (1998) Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem Biophys Res Commun 248:871–878

    Article  CAS  PubMed  Google Scholar 

  • D'Acquisto F, de Cristofaro F, Maiuri MC, Tajana G, Carnuccio R (2001) Protective role of nuclear factor kappaB against nitric oxide-induced apoptosis in J774 macrophages. Cell Death Diff 8:144–151

    Article  CAS  Google Scholar 

  • Damjanov I (1987) Lectin cytochemistry and histochemistry. Lab Invest 57:5–20

    CAS  PubMed  Google Scholar 

  • De Ritis G, Occorsio P, Auricchio S, Gramenzi F, Morisi G, Silano V (1979) Toxicity of wheat flour proteins and protein-derived peptides for in vitro developing intestine from rat fetus. Pediatr Res 13:1255–1261

    PubMed  Google Scholar 

  • Drew PD, Franzoso G, Becker KG, Bours V, Carlson LM, Siebenlist U, Ozato K (1995) NFκB and interferon regulatory factor 1 physically interact and synergistically induce major histocompatibility class I gene expression. J Interferon Cytokine Res 15:1037–1045

    CAS  PubMed  Google Scholar 

  • Eberhardt W, Kunz D, Hummel R, Pfeilschifter J (1996) Molecular cloning of the rat inducible nitric oxide synthase gene promoter. Biochem Biophys Res Commun 223:752–756

    Article  CAS  PubMed  Google Scholar 

  • Epinat J-C, Gilmore TD (1999) Diverse agent act at multiple levels to inhibit the Rel/NF-κB signal transduction pathway. Oncogene 18:6896–6909

    Article  PubMed  Google Scholar 

  • Farré Castany MA, Kocna P, Tlaskalová-Hogenová H (1995) Binding of gliadin to lymphoblastoid, myeloid and epithelial cell lines. Folia Microbiol 40:431–435

    Google Scholar 

  • Flohè L, Brigelius-Flohe R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-κB activation. Free Radic Biol Med 22:1115–1126

    Article  PubMed  Google Scholar 

  • Gao J, Morrison DC, Parmely TJ, Russell SW, Murphy WJ (1997) An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 272:1226–1230

    Article  CAS  PubMed  Google Scholar 

  • Holmegren Peterson K, Fälth-Magnusson K, Magnusson K-E, Stenhammar L, Sundqvist T (1998) Children with celiac disease express inducible nitric oxide synthase in the small intestine during gluten challenge. Scand J Gastroenterol 33:939–943

    Article  PubMed  Google Scholar 

  • Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263:1612–1615

    CAS  PubMed  Google Scholar 

  • Kim H, Lee HS, Chang KT, Ko TH, Baek KJ, Kwon NS (1995) Chloromethyl ketones block induction of nitric oxide synthase in murine macrophages by preventing activation of nuclear factor-κB. J Immunol 154:4741–4748

    CAS  PubMed  Google Scholar 

  • Kim YM, Lee BS, Yi KY, Paik SG (1997) Upstream NF-kappaB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-gamma plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochem Biophys Res Commun 236:655–660

    Article  CAS  PubMed  Google Scholar 

  • Kolberg J, Sollid LM (1985) Lectin activity of gluten identified as wheat germ agglutinin. Biochem Biophys Res Comm 130:867–872

    CAS  PubMed  Google Scholar 

  • Kontakou M, Przemioslo RT, Sturgess RP, Limb AG, Ciclitira PJ (1995) Expression of tumor necrosis factor-alfa, interleukin-6, and interleukin-2 mRNA in the jejunum of patients with coeliac disease. Scand J Gastroenterol 30:456–463

    CAS  PubMed  Google Scholar 

  • Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89

    CAS  PubMed  Google Scholar 

  • Maiuri L, Troncone R, Mayer M, Coletta S, Picarelli A, De Vincenzi M, Pavone V, Auricchio S (1996) In vitro activities of A-gliadin related synthetic peptides: damaging affect on the atrophic coeliac mucosa and activation of mucosal immune response in the treated coeliac mucosa. Scand J Gastroenterol 31:247–253

    CAS  PubMed  Google Scholar 

  • Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. Gastroenterology 102:330–354

    CAS  PubMed  Google Scholar 

  • Martin E, Nathan C, Xie QW (1994) Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med 180:977–984

    CAS  PubMed  Google Scholar 

  • Marzio R, Jirillo E, Ransijn A, Mauel J, Corradin SB (1997) Expression and function of the early activation antigen CD 69 in murine macrophages. J Leukoc Biol 62:349–355

    CAS  PubMed  Google Scholar 

  • Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzaeg P (1995) Gluten specific, HLA-DQ restricted T cells from celiac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-gamma. Gut 37:766–776

    CAS  PubMed  Google Scholar 

  • Ohmori Y, Schreiber RD, Hamilton TA (1997) Synergy between interferon-γ and tumor necrosis factor-α in transcriptional activation is mediated by cooperation between signal transducer and activated of transcription 1 and nuclear factor κB. J Biol Chem 272:14899–14907

    Article  CAS  PubMed  Google Scholar 

  • Pender SLF, Lionetti P, Murch SH, Wathan N, MacDonald TT (1996) Proteolytic degradation of intestinal mucosa extracellular matrix after lamina propria T cell activation. Gut 39:284–290

    CAS  PubMed  Google Scholar 

  • Pittschieler K, Ladinser B, Petell JK (1994) Reactivity of gliadin and lectins with celiac intestinal mucosa. Pediatr Res 36:635–641

    CAS  PubMed  Google Scholar 

  • Przemioslo R, Kontakou M, Nobili V, Ciclitira PJ (1994) Detection of interferon-gamma mRNA in the mucosa of patients with coeliac disease by in situ hybridization. Gut 35:1398–1404

    CAS  PubMed  Google Scholar 

  • Rivabene R, Mancini E, De Vincenzi M (1999) In vitro cytotoxic effect of wheat gliadin-derived peptides on the Caco-2 intestinal cell line in associated with intracellular oxidative imbalance: implications for coeliac disease. Biochem Biophys Acta 1453:152–160

    Article  CAS  PubMed  Google Scholar 

  • Roccatello D, Amprimo MC, Coppo R, Cavalli G, Quattrocchio G, Gianoglio B, Ferrero A, di Mauro C, Sena LM, Piccoli G (1990) Influence of gluten-derived fractions on chemiluminescence production by human neutrophils. J Biolumin Chemilumin 5:161–164

    CAS  PubMed  Google Scholar 

  • Shan L, Molberg Ø, Parrot I, Hausch F, Ferda F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ (1993) Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem Biophys Res Commun 191:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Sollid LM (2000) Molecular basis of celiac disease. Ann Rev Immunol 18:53–81

    Article  CAS  Google Scholar 

  • Teng X, Zhang H, Snead C, Catravas J (2002) Molecular mechanisms of iNOS induction by IL-1β and IFN-γ in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 282:C144–C152

    CAS  PubMed  Google Scholar 

  • Ter Steege J, Buurman W, Arends JW, Forget P (1997) Presence of inducible nitric oxide synthase, nitrotyrosine, CD68, and CD14 in the small intestine in celiac disease. Lab Invest 77:29–36

    PubMed  Google Scholar 

  • Tuckovà L, Flegelová Z, Tlaskalová-Hogenová H, Zìdek Z (2000) Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol 67:312–318

    PubMed  Google Scholar 

  • Tuckovà L, Novotna J, Novak P, Flegelová Z, Kveton T, Jelinkova L, Zìdek Z, Man P, Tlaskalová-Hogenová H (2002) Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol 71:625–631

    PubMed  Google Scholar 

  • Van Straaten EA, Koster-Kamphuis L, Bovee-Oudenhoven IM, van der Meer R, Forget P-P (1999) Increased urinary nitric oxide oxidation products in children with active coeliac disease. Acta Paediatr 88:528–531

    Article  PubMed  Google Scholar 

  • Weisz A, Oguchi S, Cicatiello L, Esumi H (1994) Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-γ and bacterial lipopolysaccharide. J Biol Chem 269:8324–8333

    CAS  PubMed  Google Scholar 

  • Weisz A, Cicatiello L, Esumi H (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-γ, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem J 316:209–215

    CAS  PubMed  Google Scholar 

  • Xie QW, Whisnant R, Nathan C (1993) Promoter of mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon-γ and bacterial lipopolysaccharide. J Exp Med 177:1779–1784

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Italian government (PRIN 2002). We thank Prof. Hiroyasu Esumi (National Cancer Center Research Institute East, Chiba, Japan) and Prof. Alessandro Weisz (Istituto di Patologia generale e Oncologia, Seconda Università di Napoli, Naples, Italy) for their generous gift of plasmid used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Carnuccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiuri, M.C., De Stefano, D., Mele, G. et al. Gliadin increases iNOS gene expression in interferon-γ-stimulated RAW 264.7 cells through a mechanism involving NF-κB. Naunyn-Schmiedeberg's Arch Pharmacol 368, 63–71 (2003). https://doi.org/10.1007/s00210-003-0771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0771-y

Keywords

Navigation