Skip to main content

Advertisement

Log in

γ-Glutamylcysteine rescues mice from TNBS-driven inflammatory bowel disease through regulating macrophages polarization

  • Original Research paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To explore the molecular mechanism of γ-glutamylcysteine (γ-GC) in response to inflammation in vivo and in vitro on regulating the polarization of macrophages.

Methods

The expressions of gene or protein were assessed by qPCR and Western blot assays, respectively. Cell viability was investigated by CCK-8 assay. Eight-week-old male BALB/c mice were established to examine the therapeutic effects of γ-GC in vivo. The release of TNF-α and IL-4 was determined by ELISA assay. Macrophages polarization was identified by flow cytometry assay.

Results

Our data showed that γ-GC treatment significantly improved the survival, weight loss, and colon tissue damage of IBD mice. Furthermore, we established M1- and M2-polarized macrophages, respectively, and our findings provided evidence that γ-GC switched M1/M2-polarized macrophages through activating AMPK/SIRT1 axis and inhibiting inflammation-related signaling pathway.

Conclusion

Collectively, both in vivo and in vitro experiments suggested that γ-GC has the potential to become a promising novel therapeutic dipeptide for the treatment of IBD, which provide new ideas for the treatment of inflammatory diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40. https://doi.org/10.1016/s0140-6736(07)60750-8.

    Article  CAS  PubMed  Google Scholar 

  2. Garber A, Regueiro M. Extraintestinal manifestations of inflammatory bowel disease: epidemiology, etiopathogenesis, and management. Curr Gastroenterol Rep. 2019;21:31. https://doi.org/10.1007/s11894-019-0698-1.

    Article  PubMed  Google Scholar 

  3. Habibi F, Habibi ME, Gharavinia A, Mahdavi SB, Akbarpour MJ, Baghaei A, et al. Quality of life in inflammatory bowel disease patients: a cross-sectional study. J Res Med Sci. 2017;22:104. https://doi.org/10.4103/jrms.JRMS_975_16.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Singh S, George J, Boland BS, Vande Casteele N, Sandborn WJ. Primary non-response to tumor necrosis factor antagonists is associated with inferior response to second-line biologics in patients with inflammatory bowel diseases: a systematic review and meta-analysis. J Crohns Colitis. 2018;12:635–43. https://doi.org/10.1093/ecco-jcc/jjy004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cohen NA, Rubin DT. New targets in inflammatory bowel disease therapy: 2021. Curr Opin Gastroenterol. 2021;37:357–63. https://doi.org/10.1097/mog.0000000000000740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. https://doi.org/10.1016/j.ejphar.2020.173090.

    Article  CAS  PubMed  Google Scholar 

  7. Atri C, Guerfali FZ, Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 2018;19:1801. https://doi.org/10.3390/ijms19061801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gaojian T, Dingfei Q, Linwei L, Xiaowei W, Zheng Z, Wei L, et al. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov. 2020;6:97. https://doi.org/10.1038/s41420-020-00333-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu YW, Xing RX, Zhang WH, Li L, Wu Y, Hu J, et al. Toxoplasma ROP16(I/III) ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages. World J Gastroenterol. 2019;25:6634–52. https://doi.org/10.3748/wjg.v25.i45.6634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song M, Kellum JA, Kaldas H, Fink MP. Evidence that glutathione depletion is a mechanism responsible for the anti-inflammatory effects of ethyl pyruvate in cultured lipopolysaccharide-stimulated RAW 264.7 cells. J Pharmacol Exp Ther. 2004;308:307–16. https://doi.org/10.1124/jpet.103.056622.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson ME, Meister A. Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc Natl Acad Sci USA. 1983;80:707–11. https://doi.org/10.1073/pnas.80.3.707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zarka MH, Bridge WJ. Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol. 2017;11:631–6. https://doi.org/10.1016/j.redox.2017.01.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferguson G, Bridge W. Glutamate cysteine ligase and the age-related decline in cellular glutathione: the therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys. 2016;593:12–23. https://doi.org/10.1016/j.abb.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Li L, Hang Q, Fang Y, Dong X, Cao P, et al. γ-glutamylcysteine exhibits anti-inflammatory effects by increasing cellular glutathione level. Redox Biol. 2019;20:157–66. https://doi.org/10.1016/j.redox.2018.09.019.

    Article  CAS  PubMed  Google Scholar 

  15. Lu S, Zhou J, Yang C, Zhang X, Shi Y, Liu J, et al. γ-Glutamylcysteine ameliorates D-gal-induced senescence in PC12 cells and mice via activating AMPK and SIRT1. Food Funct. 2022;13:7560–71. https://doi.org/10.1039/d2fo01246d.

    Article  CAS  PubMed  Google Scholar 

  16. Murano M, Maemura K, Hirata I, Toshina K, Nishikawa T, Hamamoto N, et al. Therapeutic effect of intracolonically administered nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin Exp Immunol. 2000;120:51–8. https://doi.org/10.1046/j.1365-2249.2000.01183.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, et al. The TNBS-induced colitis animal model: an overview. Ann Med Surg (Lond). 2016;11:9–15. https://doi.org/10.1016/j.amsu.2016.07.019.

    Article  PubMed  Google Scholar 

  18. Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, et al. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics. 2020;10:5225–41. https://doi.org/10.7150/thno.43716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16:531–43. https://doi.org/10.1038/s41575-019-0172-4.

    Article  CAS  PubMed  Google Scholar 

  20. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–9. https://doi.org/10.7150/ijbs.8879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou X, Li W, Wang S, Zhang P, Wang Q, Xiao J, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 2019;27:1176-1189.e5. https://doi.org/10.1016/j.celrep.2019.03.028.

    Article  CAS  PubMed  Google Scholar 

  22. Jin S, Meng C, He Y, Wang X, Zhang Q, Wang Z, et al. Curcumin prevents osteocyte apoptosis by inhibiting M1-type macrophage polarization in mice model of glucocorticoid-associated osteonecrosis of the femoral head. J Orthop Res. 2020;38:2020–30. https://doi.org/10.1002/jor.24619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Cao N, Yang Z, Fang X, Yang X, Li H, et al. Bilobalide alleviated dextran sulfate sodium-induced experimental colitis by inhibiting M1 macrophage polarization through the NF-κB signaling pathway. Front Pharmacol. 2020;11:718. https://doi.org/10.3389/fphar.2020.00718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiong Y, Cui X, Zhou Y, Chai G, Jiang X, Ge G, et al. Dehydrocostus lactone inhibits BLM-induced pulmonary fibrosis and inflammation in mice via the JNK and p38 MAPK-mediated NF-κB signaling pathways. Int Immunopharmacol. 2021;98:107780. https://doi.org/10.1016/j.intimp.2021.107780.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao XN, Li YN, Wang YT. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genet Mol Res. 2016. https://doi.org/10.4238/gmr.15017348.

    Article  PubMed  Google Scholar 

  26. Wang X, Zhang H, Guo R, Li X, Liu H, Wang Z, et al. MicroRNA-223 modulates the IL-4-medicated macrophage M2-type polarization to control the progress of sepsis. Int Immunopharmacol. 2021;96:107783. https://doi.org/10.1016/j.intimp.2021.107783.

    Article  CAS  PubMed  Google Scholar 

  27. Ohmori Y, Hamilton TA. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J Immunol. 1997;159:5474–82.

    Article  CAS  PubMed  Google Scholar 

  28. Fu C, Jiang L, Hao S, Liu Z, Ding S, Zhang W, et al. Activation of the IL-4/STAT6 signaling pathway promotes lung cancer progression by increasing M2 myeloid cells. Front Immunol. 2019;10:2638. https://doi.org/10.3389/fimmu.2019.02638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rahabi M, Salon M, Bruno-Bonnet C, Prat M, Jacquemin G, Benmoussa K, et al. Bioactive fish collagen peptides weaken intestinal inflammation by orienting colonic macrophages phenotype through mannose receptor activation. Eur J Nutr. 2022;61:2051–66. https://doi.org/10.1007/s00394-021-02787-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Ma J, Wang J, Chen M, Xia H, Yao S, et al. SIRT1 ameliorated septic associated-lung injury and macrophages apoptosis via inhibiting endoplasmic reticulum stress. Cell Signal. 2022;97:110398. https://doi.org/10.1016/j.cellsig.2022.110398.

    Article  CAS  PubMed  Google Scholar 

  31. Lok J, Leung W, Zhao S, Pallast S, van Leyen K, Guo S, et al. γ-glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood-brain barrier permeability after experimental brain trauma. J Neurochem. 2011;118:248–55. https://doi.org/10.1111/j.1471-4159.2011.07294.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braidy N, Zarka M, Jugder BE, Welch J, Jayasena T, Chan DKY, et al. The precursor to glutathione (GSH), γ-glutamylcysteine (GGC), can ameliorate oxidative damage and neuroinflammation induced by Aβ(40) oligomers in human astrocytes. Front Aging Neurosci. 2019;11:177. https://doi.org/10.3389/fnagi.2019.00177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, Escobar J, Sastre J, Almeida A, et al. γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun. 2012;3:718. https://doi.org/10.1038/ncomms1722.

    Article  CAS  PubMed  Google Scholar 

  34. Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life. 2019;12:113–22. https://doi.org/10.25122/jml-2018-0075.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clin Proc. 2019;94:155–65. https://doi.org/10.1016/j.mayocp.2018.09.013.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Y, Jarr K, Layton C, Gardner CD, Ashouri JF, Abreu MT, et al. Therapeutic implications of diet in inflammatory bowel disease and related immune-mediated inflammatory diseases. Nutrients. 2021;13:890. https://doi.org/10.3390/nu13030890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cai Z, Wang S, Li J. Treatment of inflammatory bowel disease: a comprehensive review. Front Med (Lausanne). 2021;8:765474. https://doi.org/10.3389/fmed.2021.765474.

    Article  PubMed  Google Scholar 

  38. Na SY, Moon W. Perspectives on current and novel treatments for inflammatory bowel disease. Gut Liver. 2019;13:604–16. https://doi.org/10.5009/gnl19019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40. https://doi.org/10.1002/jcp.26429.

    Article  CAS  PubMed  Google Scholar 

  40. Du Y, Rong L, Cong Y, Shen L, Zhang N, Wang B. Macrophage polarization: an effective approach to targeted therapy of inflammatory bowel disease. Expert Opin Ther Targets. 2021;25:191–209. https://doi.org/10.1080/14728222.2021.1901079.

    Article  CAS  PubMed  Google Scholar 

  41. Chandler SD, Zarka MH, Vinaya Babu SN, Suhas YS, Raghunatha Reddy KR, Bridge WJ. Safety assessment of gamma-glutamylcysteine sodium salt. Regul Toxicol Pharmacol. 2012;64:17–25. https://doi.org/10.1016/j.yrtph.2012.05.008.

    Article  CAS  PubMed  Google Scholar 

  42. Engevik MA, Herrmann B, Ruan W, Engevik AC, Engevik KA, Ihekweazu F, et al. Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes. 2021;13:1–21. https://doi.org/10.1080/19490976.2021.1902717.

    Article  CAS  PubMed  Google Scholar 

  43. López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and cytoskeleton in cellular barrier defects during gut inflammation. Front Immunol. 2017;8:1240. https://doi.org/10.3389/fimmu.2017.01240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mannino G, Caradonna F, Cruciata I, Lauria A, Perrone A, Gentile C. Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukin-1β. J Pineal Res. 2019;67: e12598. https://doi.org/10.1111/jpi.12598.

    Article  CAS  PubMed  Google Scholar 

  45. Olesen CM, Coskun M, Peyrin-Biroulet L, Nielsen OH. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases. Pharmacol Ther. 2016;159:110–9. https://doi.org/10.1016/j.pharmthera.2016.01.001.

    Article  CAS  PubMed  Google Scholar 

  46. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. https://doi.org/10.1016/j.intimp.2020.106210.

    Article  CAS  PubMed  Google Scholar 

  47. Yu T, Zuo Y, Cai R, Huang X, Wu S, Zhang C, et al. SENP1 regulates IFN-γ-STAT1 signaling through STAT3-SOCS3 negative feedback loop. J Mol Cell Biol. 2017;9:144–53. https://doi.org/10.1093/jmcb/mjw042.

    Article  CAS  PubMed  Google Scholar 

  48. Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198:1006–14. https://doi.org/10.4049/jimmunol.1601515.

    Article  CAS  PubMed  Google Scholar 

  49. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy–from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta. 2005;1754:253–62. https://doi.org/10.1016/j.bbapap.2005.08.017.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26:192–7. https://doi.org/10.1016/j.cellsig.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  51. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604. https://doi.org/10.1016/j.immuni.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  52. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–21. https://doi.org/10.1038/nri3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park SJ, Lee KP, Kang S, Lee J, Sato K, Chung HY, et al. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal. 2014;26:2249–58. https://doi.org/10.1016/j.cellsig.2014.07.009.

    Article  CAS  PubMed  Google Scholar 

  54. Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology. 2017;153:772–86. https://doi.org/10.1053/j.gastro.2017.05.022.

    Article  PubMed  Google Scholar 

  55. Li L, Liu M, Cao M, He T, Bai X. Research progress on SIRT1 and sepsis. Histol Histopathol. 2019;34:1205–15. https://doi.org/10.14670/hh-18-146.

    Article  CAS  PubMed  Google Scholar 

  56. Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, González-Rodríguez Á, et al. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal. 2018;28:1187–208. https://doi.org/10.1089/ars.2017.7373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park SY, Lee SW, Lee SY, Hong KW, Bae SS, Kim K, et al. SIRT1/adenosine monophosphate-activated protein kinase α signaling enhances macrophage polarization to an anti-inflammatory phenotype in rheumatoid arthritis. Front Immunol. 2017;8:1135. https://doi.org/10.3389/fimmu.2017.01135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang J, Ma S, Yu J, Zuo D, He X, Peng H, et al. MiR-9–5p promotes M1 cell polarization in osteoarthritis progression by regulating NF-κB and AMPK signaling pathways by targeting SIRT1. Int Immunopharmacol. 2021;101:108207. https://doi.org/10.1016/j.intimp.2021.108207.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Science Foundation of China (grant numbers 81771703, 81671565) and the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

ZY, LL, and JZ designed the study. JZ, XY, and XB performed the mouse experiments. JZ, XY, and SL performed the cells experiments. JZ and ZY wrote the manuscript. ZY, LL, JZ, XY, XB, SL, XL, CY, and YS reviewed the manuscript.

Corresponding authors

Correspondence to Lan Luo or Zhimin Yin.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11_2023_1691_MOESM1_ESM.tif

Supplementary file1 Fig.S1 γ-GC regulated macrophages polarization via AMPK/SIRT1 signal pathway (A-H) Raw264.7 cells were stimulated with LPS (100 ng/mL) + IFN-γ (10 ng/mL) or γ-GC (80 μM) in the presence or absence of Compound C (2 μM) or/and EX527 (1 μM), then cell lysates were subjected to immunoblotting using the indicated antibodies. (I, J) Raw264.7 cells were stimulated with IL-4 (20 ng/mL) or γ-GC (80 μM) in the presence or absence of Compound C (2 μM) or/and EX527 (1 μM), then cell lysates were subjected to immunoblotting using the indicated antibodies. Data represent the mean ± SD of at least three independent experiments. **p < 0.01, ***p < 0.001 compared with the LPS+IFN-γ+γ-GC. (TIF 11673 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yan, X., Bi, X. et al. γ-Glutamylcysteine rescues mice from TNBS-driven inflammatory bowel disease through regulating macrophages polarization. Inflamm. Res. 72, 603–621 (2023). https://doi.org/10.1007/s00011-023-01691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01691-6

Keywords

Navigation