Skip to main content
Log in

On the structure and representation theory of q-deformed Clifford algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We provide a generalized definition for the quantized Clifford algebra introduced by Hayashi using another parameter k that we call the twist. For a field of characteristic not equal to 2, we provide a basis for our quantized Clifford algebra, show that it can be decomposed into rank 1 components, and compute its center to show it is a classical Clifford algebra over the group algebra of a product of cyclic groups of order 2k. In addition, we characterize the semisimplicity of our quantum Clifford algebra in terms of the semisimplicity of a cyclic group of order 2k and give a complete set of irreducible representations. We construct morphisms from quantum groups and explain various relationships between the classical and quantum Clifford algebras. By changing our generators, we provide a further generalization to allow k to be a half integer, where we recover certain quantum Clifford algebras introduced by Fadeev, Reshetikhin, and Takhtajan as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Modifications can be made for the characteristic 2 case, but the situation is drastically different.

  2. While \({{\,\textrm{Cl}\,}}_r(R \oplus R^*)\) can be considered simply as notation for an algebra given by a presentation, if we consider \(R^*\) as the (rank 1) dual free R-module of R, then \({{\,\textrm{Cl}\,}}_r(R \oplus R^*)\) is defined analogously to the usual Clifford algebras.

References

  1. Aboumrad, W.: Skew Howe Duality for Types \(\textbf{BD}\) via Quantum Clifford Algebras. arXiv:2208.09773 (2022)

  2. Aboumrad, W.: Skew Howe Duality for \(U_q(\mathfrak{g}\mathfrak{l}_n)\) via Quantized Clifford Algebras. arXiv:2208.08979 (2022)

  3. Ariki, S.: On the decomposition numbers of the Hecke algebra of \(G(m,1, n)\). J. Math. Kyoto Univ. 36(4), 789–808 (1996). https://doi.org/10.1215/kjm/1250518452

    Article  MathSciNet  Google Scholar 

  4. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  5. Bump, D.: Lie Groups, Volume 225 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8024-2

    Book  Google Scholar 

  6. Berenstein, A., Zwicknagl, S.: Braided symmetric and exterior algebras. Trans. Am. Math. Soc. 360(7), 3429–3472 (2008). https://doi.org/10.1090/S0002-9947-08-04373-0

    Article  MathSciNet  Google Scholar 

  7. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. 360(1–2), 351–390 (2014). https://doi.org/10.1007/s00208-013-0984-4

    Article  MathSciNet  Google Scholar 

  8. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  9. Ding, J.T., Frenkel, I.B.: Spinor and oscillator representations of quantum groups. In: Lie Theory and Geometry, Volume 123 of Progress in Mathematics, pp. 127–165. Birkhäuser Boston, Boston (1994). https://doi.org/10.1007/978-1-4612-0261-5_5

  10. Drinfeld, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Dokl. Akad. Nauk SSSR 283(5), 1060–1064 (1985)

    MathSciNet  Google Scholar 

  11. Fulton, W., Harris, J.: Representation Theory, Volume 129 of Graduate Texts in Mathematics. A First Course. Readings in Mathematics, Springer, New York (1991). https://doi.org/10.1007/978-1-4612-0979-9

    Book  Google Scholar 

  12. Gerber, T.: Heisenberg algebra, wedges and crystals. J. Algebraic Comb. 49(1), 99–124 (2019). https://doi.org/10.1007/s10801-018-0820-8

    Article  MathSciNet  Google Scholar 

  13. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants, Volume 255 of Graduate Texts in Mathematics, 1st edn. Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-79852-3

    Book  Google Scholar 

  14. Hayashi, T.: Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127(1), 129–144 (1990). https://doi.org/10.1007/bf02096497

    Article  MathSciNet  Google Scholar 

  15. Jantzen, J.C.: Lectures on Quantum Groups, Volume 6 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1996). https://doi.org/10.1090/gsm/006

    Book  Google Scholar 

  16. Jimbo, M.: A \(q\)-difference analogue of \(U({\mathfrak{g} })\) and the Yang–Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985). https://doi.org/10.1007/BF00704588

    Article  MathSciNet  Google Scholar 

  17. Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of \(U_q(\widehat{\mathfrak{g} \mathfrak{l} }(n))\) at \(q=0\). Commun. Math. Phys. 136(3), 543–566 (1991)

    Article  Google Scholar 

  18. Jing, N., Misra, K.C., Okado, M.: \(q\)-wedge modules for quantized enveloping algebras of classical type. J. Algebra 230(2), 518–539 (2000). https://doi.org/10.1006/jabr.2000.8325

    Article  MathSciNet  Google Scholar 

  19. Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133(2), 249–260 (1990)

    Article  MathSciNet  Google Scholar 

  20. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991). https://doi.org/10.1215/S0012-7094-91-06321-0

    Article  MathSciNet  Google Scholar 

  21. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993). https://doi.org/10.1215/S0012-7094-93-07131-1

    Article  MathSciNet  Google Scholar 

  22. Kassel, C.: Quantum Groups, Volume 155 of Graduate Texts in Mathematics. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-0783-2

    Book  Google Scholar 

  23. Kashiwara, M., Miwa, T., Stern, E.: Decomposition of \(q\)-deformed Fock spaces. Sel. Math. (N.S.) 1(4), 787–805 (1995). https://doi.org/10.1007/BF01587910

    Article  MathSciNet  Google Scholar 

  24. Knus, M.-A.: Quadratic and Hermitian Forms Over Rings, Volume 294 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin. With a foreword by I. Bertuccioni (1991). https://doi.org/10.1007/978-3-642-75401-2

  25. Kwon, J.-H.: Q-deformed Clifford algebra and level zero fundamental representations of quantum affine algebras. J. Algebra 399, 927–947 (2014). https://doi.org/10.1016/j.jalgebra.2013.10.026

    Article  MathSciNet  Google Scholar 

  26. Lam, T.Y.: A First Course in Noncommutative Rings, Volume 131 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2001). https://doi.org/10.1007/978-1-4419-8616-0

    Book  Google Scholar 

  27. Lam, T.Y.: Introduction to Quadratic Forms Over Fields, Volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2005). https://doi.org/10.1090/gsm/067

    Book  Google Scholar 

  28. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Hecke algebras at roots of unity and crystal bases of quantum affine algebras. Commun. Math. Phys. 181(1), 205–263 (1996)

    Article  MathSciNet  Google Scholar 

  29. Leclerc, B., Thibon, J.-Y.: Canonical bases of \(q\)-deformed Fock spaces. Int. Math. Res. Not. IMRN 9, 447–456 (1996). https://doi.org/10.1155/S1073792896000293

    Article  MathSciNet  Google Scholar 

  30. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990). https://doi.org/10.2307/1990961

    Article  MathSciNet  Google Scholar 

  31. Lehrer, G.I., Zhang, H., Zhang, R.B.: A quantum analogue of the first fundamental theorem of classical invariant theory. Commun. Math. Phys. 301(1), 131–174 (2011). https://doi.org/10.1007/s00220-010-1143-3

    Article  MathSciNet  Google Scholar 

  32. Michelsohn, M.-L., Lawson, H.B.: Spin Geometry. Princeton University Press, Princeton (1990)

    Google Scholar 

  33. O’Meara, O.T.: Introduction to Quadratic Forms. Classics in Mathematics. Springer, Berlin (2000). (Reprint of the 1973 edition)

    Google Scholar 

  34. Queffelec, H., Sartori, A.: Mixed quantum skew Howe duality and link invariants of type \(A\). J. Pure Appl. Algebra 223(7), 2733–2779 (2019). https://doi.org/10.1016/j.jpaa.2018.09.014

    Article  MathSciNet  Google Scholar 

  35. Reshetikhin, N.Y., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i Analiz 1(1), 178–206 (1989)

    MathSciNet  Google Scholar 

  36. Sartori, A., Tubbenhauer, D.: Webs and \(q\)-Howe dualities in types BCD. Trans. Am. Math. Soc. 371(10), 7387–7431 (2019). https://doi.org/10.1090/tran/7583

    Article  MathSciNet  Google Scholar 

  37. The Sage Development Team: Sage Mathematics Software (Version 9.7). https://www.sagemath.org (2022)

  38. Trindade, M.A.S., Floquet, S., Vianna, J.D.M.: Clifford algebras, algebraic spinors, quantum information and applications. Mod Phys Lett A 35(29), 2050239, 20 (2020). https://doi.org/10.1142/S0217732320502399

    Article  MathSciNet  Google Scholar 

  39. Wenzl, H.: On centralizer algebras for spin representations. Commun. Math. Phys. 314(1), 243–263 (2012). https://doi.org/10.1007/s00220-012-1494-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Daniel Bump and Jae-Hoon Kwon for useful discussions. The first author also thanks Daniel Bump for his patient guidance and caring support throughout the years. The second author thanks Stanford University for its hospitality during his visit in May, 2022. The authors thank the referee for useful comments. This work benefited from computations using SageMath [37]. Some of the results in this work were discovered by the first author as part of his dissertation research. This work was partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Scrimshaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T.S. was partially supported by Grant-in-Aid for JSPS Fellows 21F51028.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboumrad, W., Scrimshaw, T. On the structure and representation theory of q-deformed Clifford algebras. Math. Z. 306, 10 (2024). https://doi.org/10.1007/s00209-023-03402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03402-7

Keywords

Mathematics Subject Classification

Navigation