Skip to main content
Log in

CLIFFORD AND WEYL SUPERALGEBRAS AND SPINOR REPRESENTATIONS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We construct a family of twisted generalized Weyl algebras which includes Weyl–Clifford superalgebras and quotients of the enveloping algebras of \( \mathfrak{gl}\left(m|n\right) \) and \( \mathfrak{osp}\left(m|2n\right) \). We give a condition for when a canonical representation by differential operators is faithful. Lastly, we give a description of the graded support of these algebras in terms of pattern-avoiding vector compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. В. В. Бавула, Обобщенные алгебры Вейля и их представления, Алгебра и анализ 4 (1992), вып. 1, 75–97. Engl. transl.: V. V. Bavula, Generalized Weyl algebras and their representations, St. Petersburg Math. J. 4 (1993), no. 1, 71–92.

  2. V. V. Bavula, D. A. Jordan, Isomorphism problems and groups of automorphisms for generalized Weyl algebras, Trans. Amer. Math. Soc. 353 (2000), 769–794.

    Article  MathSciNet  Google Scholar 

  3. V. V. Bavula, F. Van Oystaeyen, The simple modules of certain generalized crossed products, J. Algebra 194 (1997), no. 2, 521–566.

    Article  MathSciNet  Google Scholar 

  4. G. Benkart, D. J. Britten, F. Lemire Modules with bounded weight multiplicities for simple Lie algebras, Math. Zeit. 225 (1997), 333–353.

    Article  MathSciNet  Google Scholar 

  5. R. Block The irreducible representations of the Lie algebra \( \mathfrak{sl} \)(2) and of the Weyl algebra, Adv. Math. 39 (1981), 69–110.

    Article  MathSciNet  Google Scholar 

  6. D. J. Britten, F. W. Lemire, A classiffication of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683–697.

    MathSciNet  MATH  Google Scholar 

  7. T. Brzeziński, Circle and line bundles over generalized Weyl algebras, Algebr. Represent. Theory 19 (2016), no. 1, 57–69.

    Article  MathSciNet  Google Scholar 

  8. T. Cassidy, B. Shelton, Basic properties of generalized down-up algebras, J. Algebra 279 (2004), 402–421.

    Article  MathSciNet  Google Scholar 

  9. K. Coulembier, On a class of tensor product representations for the orthosymplectic superalgebra, J. Pure Appl. Algebra 217 (2013), no. 5, 819–837.

    Article  MathSciNet  Google Scholar 

  10. V. Futorny, J. T. Hartwig, On the consistency of twisted generalized Weyl algebras, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3349–3363.

    Article  MathSciNet  Google Scholar 

  11. J. Hartwig, V. Futorny, E. Wilson, Irreducible completely pointed modules for quantum groups of type A, J. Algebra 432 (2015), 252–279.

    Article  MathSciNet  Google Scholar 

  12. J. T. Hartwig, Locally finite simple weight modules over twisted generalized Weyl algebras, J. Algebra 303 (2006), 42–76.

    Article  MathSciNet  Google Scholar 

  13. J. T. Hartwig, Twisted generalized Weyl algebras, polynomial Cartan matrices and Serre-type relations, Comm. Algebra 38 (2010), 4375–4389.

    Article  MathSciNet  Google Scholar 

  14. J. T. Hartwig, Noncommutative singularities and lattice models, arXiv:1612.08125 (2016).

  15. J. T. Hartwig, J. Öinert, Simplicity and maximal commutative subalgebras of twisted generalized Weyl algebras, J. Algebra 373 (2013), 312–339.

    Article  MathSciNet  Google Scholar 

  16. J. T. Hartwig, V. Serganova, Twisted generalized Weyl algebras and primitive quotients of enveloping algebras, Algebr. Represent. Theory 19 (2016), no. 2, 277–313.

    Article  MathSciNet  Google Scholar 

  17. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8–96.

    Article  Google Scholar 

  18. O. Mathieu, Classification of irreducible weight modules, Ann. l’institut Fourier 50 (2000), 537–592.

    Article  MathSciNet  Google Scholar 

  19. V. Mazorchuk, M. Ponomarenko, L. Turowska, Some associative algebras related to U(\( \mathfrak{g} \)) and twisted generalized Weyl algebras, Math. Scand. 92 (2003), 5–30.

    Article  MathSciNet  Google Scholar 

  20. V. Mazorchuk, L. Turowska, Simple weight modules over twisted generalized Weyl algebras, Comm. Algebra 27 (1999), 2613–2625.

    Article  MathSciNet  Google Scholar 

  21. V. Mazorchuk, L. Turowska, *-Representations of twisted generalized Weyl constructions, Algebr. Represent. Theory 5 (2002), no. 2, 163–186.

    Article  MathSciNet  Google Scholar 

  22. E. Nauwelaerts, F. Van Oystaeyen, Introducing crystalline graded algebras, Algebr. Represent. Theory 11 (2008), no. 2, 133–148.

    Article  MathSciNet  Google Scholar 

  23. K. Nishiyama, Oscillator representations for orthosymplectic algebras, J. Algebra 129 (1990), no. 1, 231–262.

    Article  MathSciNet  Google Scholar 

  24. A. Sergeev, Enveloping algebra U(gl(3)) and orthogonal polynomials, in: Noncommutative Structures in Mathematics and Physics (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 22, Kluwer Acad. Publ., Dordrecht, 2001, pp. 113–124.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JONAS T. HARTWIG.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HARTWIG, J.T., SERGANOVA, V. CLIFFORD AND WEYL SUPERALGEBRAS AND SPINOR REPRESENTATIONS. Transformation Groups 25, 1185–1207 (2020). https://doi.org/10.1007/s00031-019-09542-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-019-09542-7

Navigation