Skip to main content
Log in

Blow-up solutions of the intercritical inhomogeneous NLS equation: the non-radial case

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we consider the inhomogeneous nonlinear Schrödinger (INLS) equation

$$\begin{aligned} i \partial _t u +\Delta u +|x|^{-b} |u|^{2\sigma }u = 0, \,\,\, x \in {\mathbb {R}}^N \end{aligned}$$

with \(N\ge 3\). We focus on the intercritical case, where the scaling invariant Sobolev index \(s_c=\frac{N}{2}-\frac{2-b}{2\sigma }\) satisfies \(0<s_c<1\). In a previous work, for radial initial data in \(\dot{H}^{s_c}\cap \dot{H}^1\), we prove the existence of blow-up solutions and also a lower bound for the blow-up rate. Here we extend these results to the non-radial case. We also prove an upper bound for the blow-up rate and a concentration result for general finite time blow-up solutions in \(H^1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. This is the step where we explore the decaying factor in the nonlinearity instead of the radial assumption employed by Merle et al. [29, Theorem1.1].

  2. In [25, Theorem 1.2] the authors used in this part the radial Gagliardo-Nirenberg estimate

    $$\begin{aligned} \Vert f\Vert ^4_{L^4(|x|\ge R)}\le \frac{c}{R^2}\Vert \nabla f\Vert _{L^2(|x|\ge R)}\Vert f\Vert ^3_{L^2(|x|\ge R)}, \end{aligned}$$

    and hence, they need the radial restriction. Here, we use the decay of \(|x|^{-b}\) away from the origin to obtain the desired estimate in the general case.

  3. As in the proof of Theorems 1.1 and 1.2, this is the step where we use the decaying factor in the nonlinearity to replace the radial assumption.

  4. In the proof of [7, Lemma 4.4] does not require a radial assumption.

References

  1. Aloui, L., Tayachi, S.: Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. To appear in Discrete Contin. Dyn. Syst. (2021). https://doi.org/10.3934/dcds.2021082

  2. Ardila, A.H., Cardoso, M.: Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 20(1), 101–119 (2021). https://doi.org/10.3934/cpaa.2020259. (ISSN 1534-0392.)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, R., Li, B.: Blow-up for the inhomogeneous nonlinear Schrödinger equation. ArXiv preprint arXiv:2103.13214 (2021)

  4. Campos, L.: Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 202, 112118 (2021). https://doi.org/10.1016/j.na.2020.112118. (ISSN 0362-546X)

    Article  MATH  Google Scholar 

  5. Campos, L., Cardoso, M.: On the critical norm concentration for the inhomogeneous nonlinear Schrödinger equation. ArXiv preprint arXiv:1810.09086 (2018)

  6. Campos, L., Cardoso, M.: A virial-morawetz approach to scattering for the non-radial inhomogeneous NLS. To appear in Proc. Am. Math. Soc. (2021). ArXiv preprint arXiv:2104.11266

  7. Cardoso, M., Farah, L.G.: Blow-up of radial solutions for the intercritical inhomogeneous NLS equation. To appear in J. Funct. Anal. (2021). https://doi.org/10.1016/j.jfa.2021.109134

  8. Cardoso, M., Farah, L.G., Guzmán, C.M.: On well-posedness and concentration of blow-up solutions for the intercritical inhomogeneous NLS equation. To appear in J. Dyn. Diff. Equ. (2021). https://doi.org/10.1007/s10884-021-10045-x

  9. Cardoso, M., Farah, L.G., Guzmán, C.M., Murphy, J.: Scattering below the ground state for the intercritical non-radial inhomogeneous NLS. ArXiv preprint arXiv:2007.06165 (2020b)

  10. Cazenave, T., Weissler, F.B.: Some remarks on the nonlinear Schrödinger equation in the subcritical case. In: New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), Volume 347 of Lecture Notes in Phys., pp. 59–69. Springer, Berlin (1989). https://doi.org/10.1007/BFb0025761

    Chapter  Google Scholar 

  11. Combet, V., Genoud, F.: Classification of minimal mass blow-up solutions for an \(L^2\) critical inhomogeneous NLS. J. Evol. Equ. 16(2), 483–500 (2016). https://doi.org/10.1007/s00028-015-0309-z. (ISSN 1424-3199.)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Bouard, A., Fukuizumi, R.: Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Ann. Henri Poincaré 6(6), 1157–1177 (2005). https://doi.org/10.1007/s00023-005-0236-6. (ISSN 1424-0637)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh, V., Keraani,S.: Long time dynamics of non-radial solutions to inhomogeneous nonlinear Schrödinger equations. To appear in SIAM J. Math. Anal. (2021). ArXiv preprint arXiv:2105.04941

  14. Dinh, V.D.: Blowup of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 174, 169–188 (2018). https://doi.org/10.1016/j.na.2018.04.024. (ISSN 0362-546X)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinh, V.D.: Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 19(2), 411–434 (2019). https://doi.org/10.1007/s00028-019-00481-0. (ISSN 1424-3199)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dinh, V.D.: Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions. J. Hyperbolic Differ. Equ. 18(1), 1–28 (2021). https://doi.org/10.1142/S0219891621500016. (ISSN 0219-8916)

    Article  MathSciNet  MATH  Google Scholar 

  17. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 16(1), 193–208 (2016). https://doi.org/10.1007/s00028-015-0298-y. (ISSN 1424-3199)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farah, L.G., Guzmán, C.M.: Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation. J. Differ. Equ. 262(8), 4175–4231 (2017). https://doi.org/10.1016/j.jde.2017.01.013. (ISSN 0022-0396)

    Article  MATH  Google Scholar 

  19. Farah, L.G., Guzmán, C.M.: Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions. Bull. Braz. Math. Soc. (N.S.) 51(2), 449–512 (2020). https://doi.org/10.1007/s00574-019-00160-1. (ISSN 1678-7544)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukuizumi, R., Ohta, M.: Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. J. Math. Kyoto Univ. 45(1), 145–158 (2005). https://doi.org/10.1215/kjm/1250282971. (ISSN 0023-608X)

    Article  MathSciNet  MATH  Google Scholar 

  21. Genoud, F., Stuart, C.A.: Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin. Dyn. Syst. 21(1), 137–186 (2008). https://doi.org/10.3934/dcds.2008.21.137. (ISSN 1078-0947)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55(5–6), 835–842 (2000)

    Article  Google Scholar 

  23. Guzmán, C.M.: On well posedness for the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. Real World Appl. 37, 249–286 (2017). https://doi.org/10.1016/j.nonrwa.2017.02.018. (ISSN 1468-1218)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guzmán, C.M., Murphy, J.: Scattering for the non-radial energy-critical inhomogeneous NLS. ArXiv preprint arXiv:2101.04813 (2021)

  25. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl. Math. Res. Express. AMRX 31, abm004 (2007). (ISSN 1687-1200. [Issue information previously given as no. 1 (2007)])

  26. Kim, J., Lee, Y., Seo, I.: On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case. J. Differ. Equ. 280, 179–202 (2021). https://doi.org/10.1016/j.jde.2021.01.023. (ISSN 0022-0396)

    Article  MATH  Google Scholar 

  27. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1(9), 3100–3103 (1994)

    Article  Google Scholar 

  28. Merle, F., Raphaël, P.: Blow up of the critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equations. Am. J. Math. 130(4), 945–978 (2008). https://doi.org/10.1353/ajm.0.0012. (ISSN 0002-9327)

    Article  MATH  Google Scholar 

  29. Merle, F., Raphaël, P., Szeftel, J.: On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation. Duke Math. J. 163(2), 369–431 (2014). https://doi.org/10.1215/00127094-2430477. (ISSN 0012-7094)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miao, C., Murphy, J., Zheng, J.: Scattering for the non-radial inhomogeneous NLS. To appear in Math. Res. Lett. (2021). ArXiv preprint arXiv:1912.01318

  31. Murphy, J.: A simple proof of scattering for the intercritical inhomogeneous NLS. ArXiv preprint arXiv:2101.04811 (2021)

  32. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/83). http://projecteuclid.org/euclid.cmp/1103922134. (ISSN 0010-3616)

Download references

Acknowledgements

LGF was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq and Fundação de Amparo a Pesquisa do Estado de Minas Gerais—Fapemig/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Gustavo Farah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, M., Farah, L.G. Blow-up solutions of the intercritical inhomogeneous NLS equation: the non-radial case. Math. Z. 303, 63 (2023). https://doi.org/10.1007/s00209-023-03212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03212-x

Navigation