Skip to main content
Log in

Global dimension function on stability conditions and Gepner equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the global dimension function \({\text {gldim}}:{\text {Aut}}\backslash {\text {Stab}}{\mathcal {D}}/\mathbb {C}\rightarrow \mathbb {R}_{\ge 0}\) on the quotient of the space of Bridgeland stability conditions on a triangulated category \({\mathcal {D}}\) as well as Toda’s Gepner equation \(\Phi (\sigma )=s\cdot \sigma \) for some \(\sigma \in {\text {Stab}}{\mathcal {D}}\) and \((\Phi ,s)\in {\text {Aut}}{\mathcal {D}}\times \mathbb {C}\). For the bounded derived category \({\mathcal {D}}^b(\textbf{k}Q)\) of a Dynkin quiver Q, we show that there is a unique minimal point \(\sigma _G\) of \({\text {gldim}}\) (up to the \(\mathbb {C}\)-action), with value \(1-2/h\). which is the solution of the Gepner equation \(\tau (\sigma )=(-2/h)\cdot \sigma \). Here \(\tau \) is the Auslander–Reiten functor and h is the Coxeter number. This solution \(\sigma _G\) was constructed by Kajiura–Saito–Takahashi. We also show that for an acyclic non-Dynkin quiver Q, the minimal value of \({\text {gldim}}\) is 1. Our philosophy is that the infimum of \({\text {gldim}}\) on \({\text {Stab}}{\mathcal {D}}\) is the global dimension for the triangulated category \({\mathcal {D}}\). We explain how this notion could shed light on the contractibility conjecture of the space of stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barnard, E., Gunawan, E., Meehan, E., Schiffler, R.: Cambrian combinatorics on quiver representations (type A). arXiv:1912.02840

  2. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166, 317–345 (2007). arXiv:math/0212237

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridgeland, T.: Stability conditions and Kleinian singularities. Int. Math. Res. Not. 21, 4142–4157 (2009). arXiv:math/0508257

    MathSciNet  MATH  Google Scholar 

  4. Bridgeland, T., Qiu, Y., Sutherland, T.: Stability conditions and the \({A}_2\) quiver. Adv. Math. 365, 107049 (2020). arXiv:1406.2566

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publ. Math. l’IHÉS 121, 155–278 (2015). arXiv:1302.7030

    Article  MathSciNet  MATH  Google Scholar 

  6. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17, 245–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, W., Qiu, Y.: Folding quivers and numerical stability conditions. Publ. Res. Inst. Math. Sci. (to appear). arXiv:1210.0243

  8. Dimitrov, G., Haiden, F., Katzarkov, L., Kontsevich, M.: Dynamical systems and categories. The influence of Solomon Lefschetz in geometry and topology. Contemp. Math. 621, 133–170 (2014). arXiv:1307.8418

  9. Fan, Y-W., Li, C., Liu, W., Qiu, Y.: Global dimension function, contractibility and inducing for stability conditions on \({\mathbb{P}}^{2}\). Math. Res. Lett. (to appear). arXiv:2001.11984

  10. Feyzbakhsh, S., Pertusi, L.: Serre-invariant stability conditions and Ulrich bundles on cubic threefolds. arXiv:2109.13549

  11. Ikeda, A.: Stability conditions on \(\text{ CY}_N\) categories associated to \(A_n\)-quivers and period maps. Math. Ann. 367, 149 (2017). arXiv:1405.5492

    Article  Google Scholar 

  12. Ikeda, A., Qiu, Y.: \(q\)-Stability conditions on Calabi–Yau-\({\mathbb{X}}\) categories and twisted periods. arXiv:1807.00469

  13. Ikeda, A., Qiu, Y.: \(q\)-Stability conditions via \(q\)-quadratic differentials for Calabi–Yau-\({\mathbb{X}}\) categories. Mem. Am. Math. Soc. (to appear). arXiv:1812.00010

  14. Kajiura, H., Saito, K., Takahashi, A.: Matrix factorizations and representations of quivers II: Type ADE case Adv. Math. 211, 327–362 (2007). arxiv:math/0511155

    MathSciNet  MATH  Google Scholar 

  15. Kajiura, H., Saito, K., Takahashi, A.: Triangulated categories of matrix factorizations for regular systems of weights with \(\varepsilon =-1\). Adv. Math. 220, 1602–1654 (2009). arXiv:0708.0210

    Article  MathSciNet  MATH  Google Scholar 

  16. Keller, B.: Deformed Calabi–Yau completions. J. Reine Angew. Math. 654, 125–180 (2011). arXiv:0908.3499

    MathSciNet  MATH  Google Scholar 

  17. Kikuta, K., Ouchi, G., Takahashi, A.: Serre dimension and stability conditions. Math. Zeit. (to appear). arXiv:1907.10981

  18. King, A., Qiu, Y.: Exchange graphs and Ext quivers. Adv. Math. 285, 1106–1154 (2015). arXiv:1109.2924v2

  19. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435

  20. Macri, E.: Stability conditions on curves. Math. Res. Lett. 14, 657–672 (2007). arXiv:0705.3794

    Article  MathSciNet  MATH  Google Scholar 

  21. Okada, O.: Stability manifold of \(\mathbb{P}^1\). J. Algebra Geom. 15, 487–505 (2006). arXiv:math/0411220

    Article  MathSciNet  MATH  Google Scholar 

  22. Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities algebra, arithmetic, and geometry: in honor of Yu. I. Manin. In: Progr. Math., vol. 270, pp. 503–531. Birkhauser, Boston, Inc., Boston, MA (2009). arxiv:MATH/0503632

  23. Pertusi, L., Robinett, E.: Stability conditions on Kuznetsov components of Gushel–Mukai threefolds and Serre functor. arXiv:2112.04769

  24. Qiu, Y.: Exchange graphs and stability conditions for quivers. PhD thesis, University of Bath (2011)

  25. Qiu, Y.: Stability conditions and quantum dilogarithm identities for Dynkin quivers. Adv. Math. 269, 220–264 (2015). arXiv:1111.1010

    Article  MathSciNet  MATH  Google Scholar 

  26. Qiu, Y.: The braid group for a quiver with superpotential. Sci. China Math. 62, 1241–1256 (2019). arXiv:1712.09585

  27. Qiu, Y., Woolf, J.: Contractible stability spaces and faithful braid group actions. Geom. Topol. 22, 3701–3760 (2018). arXiv:1407.5986

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiu, Y., Zhang, X.: Geometric classification of total stability conditions. arXiv:2202.00092

  29. Reineke, M.: Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 9, 653–667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37–108 (2001). arxiv:math/0001043

    Article  MathSciNet  MATH  Google Scholar 

  31. Takahashi, A.: Matrix factorizations and representations of quivers I. arXiv:math/0506347

  32. Toda, Y.: Gepner type stability conditions on graded matrix factorizations. Algebr. Geom. 1, 613–665 (2014). arXiv:1302.6293

    Article  MathSciNet  MATH  Google Scholar 

  33. Toda, Y.: Gepner point and strong Bogomolov–Gieseker inequality for quintic 3-folds. In: Higher Dimensional Algebraic Geometry in Honor of Professor Yujiro Kawamata’s Sixtieth Birthday. Adv. Stud. Pure Math., vol. 74, pp. 381–405. Math. Soc. Japan, Tokyo (2017). arXiv:1305.0345

  34. Toda, Y.: Gepner type stability condition via Orlov/Kuznetsov equivalence. Int. Math. Res. Not. 1, 24–82 (2016). arXiv:1308.3791

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Tom Bridgeland, Akishi Ikeda, Bernhard Keller, Alastair King, Kyoji Saito, Yukinobu Toda and Yu Zhou for inspirational discussions. The idea was developed when I visited IPMU, Tokyo University in March and April 2018. Also thanks to the anonymous referee who provides many useful suggestion to improve the exposition of the paper. This work is supported by National Key R &D Program of China (No. 2020YFA0713000), Beijing Natural Science Foundation (Z180003) and Hong Kong RGC 14300817 (from the Chinese University of Hong Kong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. q-stability conditions on Calabi–Yau-\(\mathbb {X}\) categories

Appendix A. q-stability conditions on Calabi–Yau-\(\mathbb {X}\) categories

Let \({\mathcal {D}}_{\mathbb {X}}\) be a triangulated category with a distinguish auto-equivalence

$$\begin{aligned} \mathbb {X}:{\mathcal {D}}_{\mathbb {X}} \rightarrow {\mathcal {D}}_{\mathbb {X}}. \end{aligned}$$

We will write \(E[l \mathbb {X}]\) instead of \(\mathbb {X}^l(E)\) for \(l \in \mathbb {Z}\) and \(E \in {\mathcal {D}}_{\mathbb {X}}\). Set

$$\begin{aligned} R=\mathbb {Z}[q^{\pm 1}] \end{aligned}$$

and define the R-action on \(K({\mathcal {D}}_{\mathbb {X}})\) by

$$\begin{aligned} q^n \cdot [E] := [E[n \mathbb {X}]]. \end{aligned}$$

Then \(K({\mathcal {D}}_{\mathbb {X}})\) has an R-module structure. Let \({\text {Aut}}{\mathcal {D}}_\mathbb {X}\) be the group of auto-equivalences of \({\mathcal {D}}_\mathbb {X}\) that commute with \(\mathbb {X}\) and \({\text {Hom}}^{\mathbb {Z}^2}(M,N):=\bigoplus _{k,l\in \mathbb {Z}}{\text {Hom}}(M,N[k+l\mathbb {Z}])\).

1.1 Calabi–Yau-\(\mathbb {X}\) categories from quivers

For an acyclic quiver Q, denote by \({\Gamma }_{\mathbb {X}}Q\) the Calabi–Yau-\(\mathbb {X}\) Ginzburg differential \(\mathbb {Z}\oplus \mathbb {Z}[\mathbb {X}]\) graded algebra of Q, that is constructed as follows (cf. [12] and [16, Sect. 7.2]):

  • Let \({\overline{Q}}\) be the graded quiver whose vertex set is \(Q_0\) and whose arrows are: the arrows in Q with degree 0; an arrow \(a^*:j\rightarrow i\) with degree \(2-\mathbb {X}\) for each arrow \(a:i\rightarrow j\) in Q; a loop \(e^*:i\rightarrow i\) with degree \(1-\mathbb {X}\) for each vertex e in Q.

  • The underlying graded algebra of \({\Gamma }_{\mathbb {X}}Q\) is the completion of the graded path algebra \(\textbf{k}{\overline{Q}}\) in the category of graded vector spaces with respect to the ideal generated by the arrows of \({\overline{Q}}\).

  • The differential of \({\Gamma }_{\mathbb {X}}Q\) is the unique continuous linear endomorphism homogeneous of degree 1 which satisfies the Leibniz rule and takes the following (non-zero) values on the arrows of \({\overline{Q}}\)

    $$\begin{aligned} {\text {d}}\sum _{e\in Q_0} e^*=\sum _{a\in Q_1} \, [a,a^*] . \end{aligned}$$

Write \({\mathcal {D}}_\mathbb {X}(Q)\) for \({\mathcal {D}}_{fd}(\mod {\Gamma }_{\mathbb {X}}Q)\), the finite dimensional derived category of \({\Gamma }_{\mathbb {X}}Q\), which admits the Serre functor \(\mathbb {X}\) that corresponds to grading shift of (0, 1).

Note that there is an embedding

$$\begin{aligned} \mathcal {L}:{\mathcal {D}}_\infty (Q)\rightarrow {\mathcal {D}}_\mathbb {X}(Q), \end{aligned}$$
(A.1)

induced from the projection \({\Gamma }_{\mathbb {X}}Q\rightarrow \textbf{k}Q\), which is a Lagrangian immersion, in the sense that

$$\begin{aligned} {\text {RHom}}_{{\mathcal {D}}_\mathbb {X}(Q)}(\mathcal {L}(L),\mathcal {L}(M))={\text {RHom}}_{{\mathcal {D}}_\infty (Q)}(L,M) \oplus D{\text {RHom}}_{{\mathcal {D}}_\infty (Q)}(M,L)[-\mathbb {X}], \end{aligned}$$
(A.2)

Moreover, \(\mathcal {L}\) also induces an R-isomorphism

$$\begin{aligned} \mathcal {L}_*:K({\mathcal {D}}_\mathbb {X}(Q))\cong _R K({\mathcal {D}}_\infty (Q)) \otimes R=R^n, \end{aligned}$$
(A.3)

where the simple \(\textbf{k}Q\)-modules provide a \(\mathbb {Z}\)-basis for \(K({\mathcal {D}}_\infty (Q))\cong \mathbb {Z}^n\) and the simple \({\Gamma }_{\mathbb {X}}Q\)-modules provide an R-basis for \(K({\mathcal {D}}_\mathbb {X}(Q))\).

By abuse of notation, we will not distinguish objects in \({\mathcal {D}}_\infty (Q)\) and their images in \({\mathcal {D}}_\mathbb {X}(Q)\) (under the fixed canonical Lagrangian immersion \(\mathcal {L}\)).

1.2 q-Stability conditions

We recall q-stability conditions from [12].

Definition A.1

[12, Def. 3.4] Suppose that \({\mathcal {D}}\) is a triangulated category with Grothendieck group \(K({\mathcal {D}}_\mathbb {X})\cong _R R^n\). An q-stability condition consists of a (Bridgeland) stability condition \(\sigma =(Z,\mathcal {P})\) on \({\mathcal {D}}_\mathbb {X}\) and a complex number \(s\in \mathbb {C}\), satisfying

$$\begin{aligned} \mathbb {X}(\sigma )=s \cdot \sigma . \end{aligned}$$
(A.4)

We may write \(\sigma [\mathbb {X}]\) for \(\mathbb {X}(\sigma )\). Denote by \({\text {QStab}}_s{\mathcal {D}}_{\mathbb {X}}\), the space of q-stability conditions consisting of \((\sigma , s)\) with q-support property.

We have the following results.

Proposition A.2

[12, Thm. 3.10] The projection map defined by taking central charges

$$\begin{aligned} \pi _Z :{\text {QStab}}_s{\mathcal {D}}_\mathbb {X}\longrightarrow {\text {Hom}}_{R}(K({\mathcal {D}}_{\mathbb {X}}),\mathbb {C}_s), \quad (Z,\mathcal {P}) \mapsto Z \end{aligned}$$
(A.5)

is a local isomorphism of topological spaces. In particular, \(\pi \) induces a complex structure on \({\text {QStab}}_s{\mathcal {D}}_{\mathbb {X}}\).

Theorem A.3

[12, Thm. 5.9] Let \(\sigma =(Z,\mathcal {P})\) be a stability condition on \({\text {Stab}}{\mathcal {D}}_\infty (Q)\) and let \(s\in \mathbb {C}\) satisfies

$$\begin{aligned} \Re (s)\ge {\text {gldim}}\sigma +1. \end{aligned}$$

Then \(\mathcal {L}\) induces a q-stability condition \((\sigma ^{\mathcal {L}}_s,s)\) such that \(\sigma ^{\mathcal {L}}_s=(Z^{\mathcal {L}}_s,\mathcal {P}^{\mathcal {L}}_s)\) is defined as

  • \(Z^{\mathcal {L}}_s=q_s\circ \big ( Z \otimes 1 \big ):K({\mathcal {D}}_\mathbb {X}(Q))\rightarrow \mathbb {C}\) (recall that we have (A.3)), where \(q_s\) is the specialization

    $$\begin{aligned} q_s:\mathbb {C}[q,q^{-1}]\rightarrow \mathbb {C},\quad q\mapsto e^{\textbf{i} \pi s}. \end{aligned}$$
  • \(\mathcal {P}^{\mathcal {L}}_s(\phi )=\langle \mathcal {P}(\phi +k\Re (s)) [k\mathbb {X}] \mid k\in \mathbb {Z}\rangle .\)

As we have calculate the image of \({\text {gldim}}\) on \({\text {Stab}}{\mathcal {D}}_\infty (Q)\) in Theorem 4.8, a direct corollary is the following.

Corollary A.4

Let Q be a Dynkin quiver and \(\Re (s)\ge {\text {gd}}_Q+1\). Then \({\text {QStab}}_s{\mathcal {D}}_\mathbb {X}(Q)\) is non-empty.

In particular, for any \(\Re (s)\ge {\text {gd}}_Q+1\), denote by \(\sigma _{G,s}^{\mathcal {L}}\) the induced q-stability condition in \({\text {QStab}}_s{\mathcal {D}}_\mathbb {X}(Q)\) from the Gepner point \(\sigma _G\in {\text {Stab}}{\mathcal {D}}_\infty (Q)\) with \({\text {gldim}}\sigma _G={\text {gd}}_Q\). In the rest of this section, we shall prove that \(\sigma _{G,s}^{\mathcal {L}}\) is a Gepner point of \({\text {QStab}}_s{\mathcal {D}}_\mathbb {X}\), in the sense that it satisfies one more Gepner equation (2.2) other than (A.4).

1.3 Center of the braid group

Definition A.5

[6] Denote by \({\text {Br}}(Q)\) the braid group (a.k.a Artin group) associated to a Dynkin quiver Q, which admits the following presentation

$$\begin{aligned}\begin{array}{rll} &{}{}{\text{ Br }}(Q)=\langle b_i, i\in Q_0 \mid {\text{ Co }}(b_i,b_{j}), \text{ no } \text{ arrows } \text{ between } i \text{ and } j;\\ {} &{}{} {\text{ Br }}(b_j,b_k), \exists ! \text{ arrow } \text{ between } i \hbox { and }j \rangle . \end{array}\end{aligned}$$

where \({\text {Co}}(a,b)\) means the commutation relation \(ab=ba\) and \({\text {Br}}(a,b)\) means the braid relation \(aba=bab\).

Provided the labeling of vertices as in (4.9), define

$$\begin{aligned}&\zeta _Q=b_n \circ ... \circ b_1, \end{aligned}$$
(A.6)
$$\begin{aligned}&\delta _Q={\left\{ \begin{array}{ll} 1, \quad &{}~\hbox {if}~Q~\hbox {is of type}~A_n, D_{2l+1}, E_6;\\ 1/2, \quad &{}~\hbox {if}~Q~\hbox {is of type}~D_{2l}, E_7, E_8. \end{array}\right. } \end{aligned}$$
(A.7)

Then it is well-known that \(z_Q=\zeta _Q^{\delta _Q h_Q}\) generates of the center of the braid group \({\text {Br}}(Q)\).

Definition A.6

An object S in a CY-\(\mathbb {X}\) category \({\mathcal {D}}\) is (\(\mathbb {X}\)-)spherical if

$$\begin{aligned} {\text {Hom}}(S, S[k+l\mathbb {X}]){\left\{ \begin{array}{ll} \textbf{k},&{} \text {if }k=0\text { and }l\in \{0,1\};\\ 0,&{} \text {otherwise}, \end{array}\right. } \end{aligned}$$

and induces a twist functor \(\Psi _S\in {\text {Aut}}{\mathcal {D}}\), such that

$$\begin{aligned} \Psi _S(X)={\text {Cone}}\left( S\otimes {\text {Hom}}^{\mathbb {Z}^2}(S,X)\rightarrow X\right) \end{aligned}$$

with inverse

$$\begin{aligned} \Psi _S^{-1}(X)={\text {Cone}}\left( X\rightarrow S\otimes {\text {Hom}}^{\mathbb {Z}^2}(X,S)^\vee \right) [-1]. \end{aligned}$$

In the case when \({\mathcal {D}}_\mathbb {X}(Q)={\mathcal {D}}_{fd}({\Gamma }_{\mathbb {X}}Q)\), any simple \(S_i\) for \(i\in Q_0\) in the canonical heart

$$\begin{aligned} \mathcal {H}_Q^\mathbb {X}:=\mod {\Gamma }_{\mathbb {X}}Q \end{aligned}$$

is spherical and the spherical twist group is

$$\begin{aligned} {\text {ST}}_\mathbb {X}(Q):=\langle \Psi _{S_i} \mid i\in Q_0 \rangle \subset {\text {Aut}}{\mathcal {D}}_\mathbb {X}(Q). \end{aligned}$$

We have the following.

Theorem A.7

[12, Thm. 6.6] There is a canonical isomorphism \({\text {Br}}(Q)\cong {\text {ST}}_\mathbb {X}(Q)\), sending the standard generators to the standard ones.

Thus the generator \(\zeta _Q\) of \(Z({\text {Br}}(Q))\) becomes

$$\begin{aligned} \zeta _Q^{\mathcal {L}}=\Psi _{S_n}\circ \cdots \circ \Psi _{S_1}. \end{aligned}$$

1.4 \(\mathbb {X}\)-Auslander–Reiten functor

First, we prove the following lemma.

Lemma A.8

\(\mathcal {L}\) induces an injection \(\mathcal {L}_*:{\text {Aut}}{\mathcal {D}}_\infty (Q)\rightarrow {\text {Aut}}{\mathcal {D}}_\mathbb {X}(Q)\) that fits into the commutative diagram

for any \(\Phi \in {\text {Aut}}{\mathcal {D}}_\infty (Q)\).

Proof

By Kozsul duality,

$$\begin{aligned} {\mathcal {D}}_\infty (Q)={\mathcal {D}}_{fd}(\textbf{k}Q)\cong {\text {per}}{\mathcal {E}}_Q, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {E}}_Q={\text {RHom}}_{{\mathcal {D}}_\infty (Q)}(S_Q,S_Q) \end{aligned}$$

is the dg endomorphism algebra for \(S_Q=\bigoplus S_i\). Similarly, we have

$$\begin{aligned} {\mathcal {D}}_\mathbb {X}(Q)={\mathcal {D}}_{fd}({\Gamma }_{\mathbb {X}}Q)\cong {\text {per}}{\mathcal {E}}_Q^\mathbb {X}, \end{aligned}$$

where

$$\begin{aligned} {\mathcal {E}}_Q^\mathbb {X}={\text {RHom}}^{\mathbb {Z}^2}_{{\mathcal {D}}_\mathbb {X}(Q)}(S_Q, S_Q) \end{aligned}$$

is the differential \(\mathbb {Z}^2\)-graded endomorphism algebra. Then any auto-equivalence \(\Phi \) in \({\text {Aut}}{\mathcal {D}}_\infty (Q)\) maps \({\mathcal {E}}_Q\) to another dg endomorphism algebra

$$\begin{aligned} \Phi ({\mathcal {E}}_Q)={\text {RHom}}^{\mathbb {Z}^2}_{{\mathcal {D}}_\mathbb {X}(Q)}(\Phi (S_Q), \Phi (S_Q)) \end{aligned}$$

that \(\Phi \) can be realized as \({\text {per}}{\mathcal {E}}_Q\rightarrow {\text {per}}\Phi ({\mathcal {E}}_Q)\). After applying \(\mathcal {L}\) that passes to \({\mathcal {D}}_\mathbb {X}(Q)\), we obtain an auto-equivalence

$$\begin{aligned} \mathcal {L}_*(\Phi ):{\text {per}}{\mathcal {E}}_Q^\mathbb {X}\rightarrow {\text {per}}\mathcal {L}_*\left( \Phi ({\mathcal {E}}_Q^\mathbb {X})\right) . \end{aligned}$$

Finally, if \(\mathcal {L}_*(\Phi )={\text {id}}\) preserves \(S_i\) in \({\mathcal {D}}_\mathbb {X}(Q)\) (and the \({\text {Hom}}\)s between them), then \(\Phi \) preserves them in \({\mathcal {D}}_\infty (Q)\), which must be identity. \(\square \)

Now, let \(\tau _\mathbb {X}^{\mathcal {L}}=\mathcal {L}_*(\tau )\in {\text {Aut}}{\mathcal {D}}_\mathbb {X}(Q)\). We have the following.

Proposition A.9

Let Q be a Dynkin quiver. Then

$$\begin{aligned} \tau _\mathbb {X}^{\mathcal {L}}=[\mathbb {X}-2]\circ \zeta _Q^{\mathcal {L}}\end{aligned}$$
(A.8)

satisfies \((\tau _\mathbb {X}^{\mathcal {L}})^h=[-2]\).

Proof

The calculation is exactly the same as the Calabi–Yau-N case in the proof of [24, Prop. 6.4.1]. Note that the assumption there, i.e. the isomorphism \({\text {Br}}(Q)\cong {\text {ST}}_N(Q)\), has been proved in Theorem A.7 (cf. [27]). \(\square \)

Recall we have a Gepner point \(\sigma _G=(Z_G, \mathcal {P}_G)\) on \({\text {Stab}}{\mathcal {D}}_\infty (Q)\) and it induces a q-stability condition \((\sigma _{G,s}^{\mathcal {L}},s)\) for \(\Re (s)\ge {\text {gd}}_Q+1\), where \(\sigma _{G,s}^{\mathcal {L}}=(Z^{\mathcal {L}}_s,\mathcal {P}^{\mathcal {L}}_s)\) is constructed in Theorem A.3.

Theorem A.10

\(\sigma _{G,s}^{\mathcal {L}}\in {\text {QStab}}_s{\mathcal {D}}_\mathbb {X}(Q)\) satisfies the Gepner equation

$$\begin{aligned} \tau _\mathbb {X}^{\mathcal {L}}(\sigma )=\left( -\frac{2}{h}\right) \cdot \sigma \end{aligned}$$
(A.9)

for \(\Re (s)\ge {\text {gd}}_Q+1\).

Proof

As \(\tau _\mathbb {X}^{\mathcal {L}}\) is induced from \(\tau \) via \(\mathcal {L}\), we have \(\tau _\mathbb {X}^{\mathcal {L}}= \tau \otimes R \) on the Grotendieck groups. Thus, for the central charge we have

$$\begin{aligned}\begin{array}{rcl} Z_{G,s}^\mathcal {L}\circ \tau _\mathbb {X}^{\mathcal {L}}&{}=&{} \left( q_s\circ (Z_G\otimes R) \right) \circ \tau _\mathbb {X}^{\mathcal {L}}\\ &{}=&{}q_s\circ \left( (Z_G\otimes R)\circ \tau _\mathbb {X}^{\mathcal {L}}\right) \\ &{}=&{}q_s\circ \left( (Z_G\circ \tau )\otimes R\right) \\ &{}=&{}q_s\circ \left( (e^{2\pi \textbf{i}/h}\cdot Z_G)\otimes R\right) \\ &{}=&{} e^{2\pi \textbf{i}/h}\cdot \big ( q_s\circ (Z_G\otimes R) \big ) \\ &{}=&{} e^{2\pi \textbf{i}/h}\cdot Z_{G,s}^\mathcal {L}, \end{array}\end{aligned}$$

where we use the Gepner property of \(\sigma _G\) that \(Z_G\circ \tau = e^{2\pi \textbf{i}/h}\cdot Z_G\). For the slicing, we have \(\tau _\mathbb {X}^{\mathcal {L}}(\mathcal {P})=\tau (\mathcal {P})\) (recall that we identify \(\mathcal {P}(\phi )\subset {\mathcal {D}}_\infty (Q)\) with its image in \({\mathcal {D}}_\mathbb {X}(Q)\) under \(\mathcal {L}\)) and hence

$$\begin{aligned}\begin{array}{rcl} \tau _\mathbb {X}^{\mathcal {L}}\big ( \mathcal {P}_{G,s}^\mathcal {L}(\phi ) \big ) &{}=&{} \big \langle \tau \big ( \mathcal {P}(\phi -k\Re (s)) \big ) [k\mathbb {X}] \mid k\in \mathbb {Z}\big \rangle \\ &{}=&{} \big \langle \mathcal {P}_{(-2/h)}(\phi -k\Re (s) ) [k\mathbb {X}] \mid k\in \mathbb {Z}\big \rangle \\ &{}=&{} ( \mathcal {P}_{G,s}^\mathcal {L})_{(-2/h)} (\phi ) \end{array} \end{aligned}$$

where we use the Gepner property of \(\sigma _G\) that \(\tau (\mathcal {P})=\mathcal {P}_{(-2/h)}\). Thus \(\sigma _{G,s}^{\mathcal {L}}\) satisfies (A.9). \(\square \)

Remark A.11

A reachable Lagrangian immersion \(\mathcal {L}'\), by definition, is of the form \(\mathcal {L}'=\Upsilon \circ \mathcal {L}\) for \(\Upsilon \in {\text {Aut}}{\mathcal {D}}_\mathbb {X}(Q)\), where \(\mathcal {L}\) is the fixed initial Lagrangian immersion in (A.1). By the construction in Theorem A.3, we have

$$\begin{aligned} \sigma _{G,s}^{\mathcal {L}'}=\Upsilon \circ \sigma _{G,s}^{\mathcal {L}}, \end{aligned}$$

which solves the equation

$$\begin{aligned} \tau _\mathbb {X}^{\mathcal {L}'}(\sigma )=\left( -\frac{2}{h}\right) \cdot \sigma , \end{aligned}$$

for

$$\begin{aligned} \tau _\mathbb {X}^{\mathcal {L}'}=(\mathcal {L}')_*(\tau )= \Upsilon \circ \tau _\mathbb {X}^{\mathcal {L}}\circ \Upsilon ^{-1}. \end{aligned}$$

Therefore, all such Gepner points \(\sigma _{G,s}^{\mathcal {L}'}\) correspond to the same point \(\sigma _G\) in \({\text {Stab}}{\mathcal {D}}_\mathbb {X}(Q)/\mathbb {C}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y. Global dimension function on stability conditions and Gepner equations. Math. Z. 303, 11 (2023). https://doi.org/10.1007/s00209-022-03170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03170-w

Keywords

Navigation