Skip to main content
Log in

Ramanujan-style congruences for prime level

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish Ramanujan-style congruences modulo certain primes \(\ell \) between an Eisenstein series of weight k, prime level p and a cuspidal newform in the \(\varepsilon \)-eigenspace of the Atkin–Lehner operator inside the space of cusp forms of weight k for \(\Gamma _0(p)\). Under a mild assumption, this refines a result of Gaba–Popa. We use these congruences and recent work of Ciolan, Languasco and the third author on Euler–Kronecker constants, to quantify the non-divisibility of the Fourier coefficients involved by \(\ell .\) The degree of the number field generated by these coefficients we investigate using recent results on prime factors of shifted prime numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some authors use y-smooth. Friable is an adjective meaning easily crumbled or broken.

References

  1. Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _0(m)\). Math. Ann. 185, 134–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berndt, B.C., Ono, K.: Ramanujan’s unpublished manuscript on the partition and tau functions with proofs and commentary, The Andrews Festschrift (Maratea, 1998), (Eds.) D. Foata and G.N. Han, 2001, 39–110

  3. Bettin, S., Perret-Gentil, C., Radziwiłł, M.: A note on the dimension of the largest simple Hecke submodule. Int. Math. Res. Not. 2021, 4907–4919 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billerey, N., Menares, R.: On the modularity of reducible mod l Galois representations. Math. Res. Lett. 23, 15–41 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choi, S., Kim, C.H.: Basis for the space of weakly holomorphic modular forms in higher level cases. J. Number Theory 133, 1300–1311 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, S., Kim, C.H., Lee, K.S.: Arithmetic properties for the minus space of weakly holomorphic modular forms. J. Number Theory 196, 306–339 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciolan, A., Languasco, A., Moree, P.: Landau and Ramanujan approximations for divisor sums and coefficients of cusp forms. J. Math. Anal. Appl. 519(2), 126854 (2023). https://doi.org/10.1016/j.jmaa.2022.126854

  8. Datskovsky, B., Guerzhoy, P.: On Ramanujan congruences for modular forms of integral and half-integral weights. Proc. Am. Math. Soc. 340, 861–868 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. Ec. Norm. Sup. 7, 507–530 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diamond, F.: Congruence primes for cusp forms of weight\(k\ge 2\), in Courbes modulaires et courbes de Shimura (Orsay, 1987/1988), Astérisque No. 196-197 (1991), 6, 205–213 (1992)

  11. Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Mat. Astr. Fys. 22, 1–14 (1930)

    MATH  Google Scholar 

  12. Dummigan, N., Fretwell, D.: Ramanujan-style congruences of local origin. J. Number Theory 143, 248–261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edixhoven, B.: Serre’s conjecture. In: Cornell, G., Silverman, J.H., Stevens, G. (eds.) Modular Forms and Fermat’s Last Theorem, pp. 209–242. Springer-Verlag, New York (1997)

    Chapter  Google Scholar 

  14. Evertse, J.-H.: On equations in S-units and the Thue–Mahler equation. Invent. Math. 75, 561–584 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, B., Wu, J.: On the density of shifted primes with large prime factors. Sci. China Math. 61, 83–94 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaba, R., Popa, A.A.: A generalization of Ramanujan’s congruence to modular forms of prime level. J. Number Theory 193, 48–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gannon, T.: Monstrous moonshine: the first twenty-five years. Bull. Lond. Math. Soc. 38, 1–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gannon, T.: Moonshine beyond the Monster. The Bridge Connecting Algebra, Modular Forms and Physics (Cambridge Monographs on Mathematical Physics), Cambridge, Cambridge University Press, 2006

  19. Lamzouri, Y.: Smooth values of the iterates of the Euler phi-function. Canad. J. Math. 59, 127–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lang, S.: Introduction to Modular Forms, Grundlehren der Mathematischen Wissenschaften 222. Springer-Verlag, Berlin-New York (1976)

    Google Scholar 

  21. Langlands, R.P.: Modular forms and\(\ell \)-adic representations. Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 361–500. Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973

  22. Liu, J.-Y., Wu, J., Xi, P.: Primes in arithmetic progressions with friable indices. Sci. China Math. 63, 23–38 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loeffler, D., Weinstein, J.: On the computation of local components of a newform. Math. Comp. 81, 1179–1200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luca, F., Menares, R., Pizarro-Madariaga, A.: On shifted primes with large prime factors and their products. Bull. Belg. Math. Soc. Simon Stevin 22, 39–47 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Etudes Sci. 47, 33–186 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moree, P.: On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions. Ramanujan J. 8, 317–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moree, P.: Counting numbers in multiplicative sets: Landau versus Ramanujan, Mathematics Newsletter, #3 (2011), 73–81

  28. Moree, P.: Nicolaas Govert de Bruijn, the enchanter of friable integers, Indag. Math. (N.S.) 24 (2013), 774–801

  29. Nikdelan, Y.: Ramanujan-type systems of nonlinear ODEs for \(\Gamma _0(2)\) and \(\Gamma _0(3)\). Expo. Math. 40(3), 409–431 (2022). https://doi.org/10.1016/j.exmath.2022.04.001

  30. Paşol, V., Popa, A.A.: Modular forms and period polynomials, Proc. Lond. Math. Soc. (3) 107 (2013), 713–743

  31. Ramanujan, S.: On certain arithmetic functions. Trans. Cambridge Philos. Soc. 22, 159–184 (1916)

    MATH  Google Scholar 

  32. Rankin, R.A.: The divisibility of divisor functions. Proc. Glasgow Math. Assoc. 5, 35–40 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ribet, K.A.: Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987–88, 259–271, Progr. Math. 81, Birkhäuser Boston, Boston, MA, 1990

  34. Serre, J.-P.: Divisibilité de certaines fonctions arithmétiques. Enseignement Math. 22, 227–260 (1976)

    MathSciNet  MATH  Google Scholar 

  35. Serre, J.-P.: Sur les repŕesentations modulaires de degré\(2\)de Gal\((\overline{{\mathbb{Q}}}/{\mathbb{Q}}),\) Duke Math. J. 54 (1987), 179–230

  36. Wang, Z.: Autour des plus grands facteurs premiers d’entiers consécutifs voisins d’un entier criblé. Q. J. Math. 69, 995–1013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Z.: Three conjectures on \(P^+(n)\) and \(P^+(n+1)\) hold under the Elliott-Halberstam conjecture for friable integers. J. Number Theory 223, 1–11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shaunak Deo for several useful discussions, going through the paper carefully and giving useful suggestions. We also thank Jaban Meher for sharing his ideas in the proof of Theorem 1.4 and Dan Fretwell for his useful comments. Matteo Bordignon explained the authors how to compute \(\rho (u)\) using SAGE, Zhiwei Wang updated them on the literature on friable shifted primes and Nicolas Billerey and Ricardo Menares pointed out the existence of [3]. The third author thanks Younes Nikdelan for his meticulous proofreading of earlier versions and frequent discussions on his related preprint [29]. The authors thank the anonymous referees for a careful reading of the manuscript and for giving valuable suggestions. The research of the first author was supported by the grant no. 692854 provided by the European Research Council (ERC) while the second author was supported by Israeli Science Foundation grant 1400/19. This work was carried out when these two authors were postdoctoral fellows at Hebrew University of Jerusalem and Bar–Ilan University respectively. The open-source mathematics software SAGE (www.sagemath.org) has been used for the numerical computations in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumari, M., Moree, P. et al. Ramanujan-style congruences for prime level. Math. Z. 303, 19 (2023). https://doi.org/10.1007/s00209-022-03159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03159-5

Keywords

Mathematics Subject Classification

Navigation