Skip to main content
Log in

Obtaining an explicit interval for a nonlinear Newhouse thickness theorem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(C_1\) and \(C_2\) be two Cantor sets in \({\mathbb {R}}\). Suppose that the size of the largest gap of \(C_1\) is not greater than the diameter of \(C_2\), and vice versa. Newhouse (Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Fractal dimensions and infinitely many attractors. Cambridge University Press, Cambridge, 1993) proved if \(\tau (C_1)\cdot \tau (C_2)\ge 1\), then the arithmetic sum \(C_1+C_2\) is an interval, where \(\tau (C_i), 1\le i\le 2\) denotes the thickness of \(C_i\). In this paper, we generalize this thickness theorem as follows. Let \(K_i\subset {\mathbb {R}}, i=1,\ldots , d\), be some Cantor sets in \({\mathbb {R}}\). Suppose \(f(x_1,\ldots , x_{d-1},z)\in {\mathcal {C}}^1\) is defined on \({\mathbb {R}}^d\). Denote the continuous image of f by

$$\begin{aligned} f\left( K_1,\ldots , K_d\right) =\left\{ f\left( x_1, \ldots , x_{d-1},z\right) :x_i\in K_i,z\in K_d, 1\le i\le d-1\right\} . \end{aligned}$$

In this paper, we give a sufficient condition under which \(f(K_1,\ldots , K_d)\) is a closed interval. Our idea can reprove the Newhouse thickness theorem. Various applications are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Astels, S.: Cantor sets and numbers with restricted partial quotients. Trans. Am. Math. Soc. 352(1), 133–170 (2000)

    Article  MathSciNet  Google Scholar 

  2. Athreya, J.S., Reznick, B., Tyson, J.T.: Cantor set arithmetic. Am. Math. Mon. 126(1), 4–17 (2019)

    Article  MathSciNet  Google Scholar 

  3. Banakh, T., Jabłońska, E., Jabłoński, W.: The continuity of additive and convex functions which are upper bounded on non-flat continua in \(\mathbb{R}^n\). Topol. Methods Nonlinear Anal. 54(1), 247–256 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bárány, B.: On some non-linear projections of self-similar sets in \(\mathbb{R}^3\). Fund. Math. 237(1), 83–100 (2017)

    Article  MathSciNet  Google Scholar 

  5. Carlos Gustavo, T.D.A., Yoccoz, J.C.: Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. Math. (2), 154(1):45–96 (2001)

  6. Dajani, K., Kraaikamp, C.: Ergodic theory of numbers. Carus Mathematical Monographs, vol. 29. Mathematical Association of America, Washington, DC (2002)

  7. Diviš, B.: On the sums of continued fractions. Acta Arith. 22, 157–173 (1973)

    Article  MathSciNet  Google Scholar 

  8. Feng, D., Yufeng, W.: On arithmetic sums of fractal sets in \({\mathbb{R}}^d\). J. Lond. Math. Soc. 2, 1–31 (2020)

    Google Scholar 

  9. Greenleaf, A., Iosevich, A., Taylor, K.: Configuration sets with nonempty interior. J. Geom. Anal. 31(7), 6662–6680 (2021)

    Article  MathSciNet  Google Scholar 

  10. Hlavka, J.L.: Results on sums of continued fractions. Trans. Am. Math. Soc. 211, 123–134 (1975)

    Article  MathSciNet  Google Scholar 

  11. Hochman, M., Shmerkin, P.: Local entropy averages and projections of fractal measures. Ann. Math. (2) 175(3), 1001–1059 (2012)

    Article  MathSciNet  Google Scholar 

  12. Iosevich, A., Mourgoglou, M., Taylor, K.: On the Mattila–Sjölin theorem for distance sets. Ann. Acad. Sci. Fenn. Math. 37(2), 557–562 (2012)

    Article  MathSciNet  Google Scholar 

  13. Jiang, K., Xi, L.: Interiors of continuous images of the middle-third Cantor set (2018). arXiv:1809.01880

  14. Jiangwen, G., Jiang, K., Xi, L., Zhao, B.: Multiplication on uniform \(\lambda \)-Cantor set. Ann. Acad. Sci. Fenn. Math. 46(2), 703–711 (2021)

    Article  MathSciNet  Google Scholar 

  15. Marchese, L.: On the measure of products from the middle-third Cantor set (2021). arXiv:2104.09939

  16. Marshall, H., Jr.: On the sum and product of continued fractions. Ann. Math. 2(48), 966–993 (1947)

    MathSciNet  Google Scholar 

  17. McDonald, A., Taylor, K.: Finite point configurations in products of thick cantor sets and a robust nonlinear newhouse gap lemma (2021). arXiv:2111.09393

  18. Moshchevitin, N.: On a theorem of M. Hall. Uspekhi Mat. Nauk 52(6), 145–146 (1997)

    Article  Google Scholar 

  19. Moshchevitin, N.: On the image of the Cartesian product of Cantor \(\tau \)-sets under a smooth mapping. Math. Zametki 68(6), 948–950 (2000)

    Article  MathSciNet  Google Scholar 

  20. Newhouse, S.E.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 50, 101–151 (1979)

    Article  MathSciNet  Google Scholar 

  21. Palis, J., Takens, F.: Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, volume 35 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. Fractal dimensions and infinitely many attractors (1993)

  22. Peres, Y., Shmerkin, P.: Resonance between Cantor sets. Ergodic Theory Dyn. Syst. 29(1), 201–221 (2009)

    Article  MathSciNet  Google Scholar 

  23. Pourbarat, M.: On the arithmetic difference of middle cantor sets. Discrete Cont. Dyn. Syst. 38(9), 4259–4278 (2018)

    Article  MathSciNet  Google Scholar 

  24. Simon, K., Taylor, K.: Interior of sums of planar sets and curves. Math. Proc. Camb. Philos. Soc. 168(1), 119–148 (2020)

    Article  MathSciNet  Google Scholar 

  25. Steinhaus, H.: Mowa Własność Mnogości Cantora. Wector, 1-3. (Steinhaus, H. D., trans.): Selected Papers. Warszawa: PWN. (1985)

  26. Takahashi, Y.: Products of two Cantor sets. Nonlinearity 30(5), 2114–2137 (2017)

    Article  MathSciNet  Google Scholar 

  27. Yu, H.: Fractal projections with an application in number theory (2020). arXiv:2004.05924

Download references

Acknowledgements

The author is grateful to Professor Nikolay Moshchevitin for informing and sending his elegant results [18, 19], and for some inspired discussions on the applications of thickness theorem. This work is supported by the Zhejiang Provincial Natural Science Foundation of China with No.LY20A010009. The work is also supported by K.C. Wong Magna Fund in Ningbo University. The author is grateful to the referees for reading the manuscript carefully, and for giving many useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K. Obtaining an explicit interval for a nonlinear Newhouse thickness theorem. Math. Z. 301, 1011–1037 (2022). https://doi.org/10.1007/s00209-021-02945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02945-x

Keywords

Mathematics Subject Classification

Navigation