Skip to main content
Log in

Hyers–Ulam stability on local fractal calculus and radioactive decay

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

This article has been updated

Abstract

In this paper, we summarize the local fractal calculus, called \(F^{\alpha }\)-calculus, which defines derivatives and integrals of functions with fractal domains of non-integer dimensions, functions for which ordinary calculus fails. Hyers–Ulam stability provides a method to find approximate solutions for equations where the exact solution cannot be found. Here, we generalize Hyers–Ulam stability to be applied to \(\alpha \)-order linear fractal differential equations. The nuclear decay law involving fractal time is suggested, and it is proved to be fractally Hyers–Ulam stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 27 November 2021

    The change has to be made due to a typo in the Acknowledgements.

References

  1. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977)

    Google Scholar 

  2. A. Bunde, S. Havlin (eds.), Fractals in Science (Springer, Berlin, 1995)

    Google Scholar 

  3. J. Kigami, Analysis on Fractals (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  4. M. Czachor, Acta Phys. Pol. B 50(4), 813 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Parvate, A.D. Gangal, Fractals 17(01), 53–148 (2009)

    Article  MathSciNet  Google Scholar 

  6. A. Parvate, A.D. Gangal, Fractals 19(03), 271–290 (2011)

    Article  MathSciNet  Google Scholar 

  7. A.K. Golmankhaneh, K. Welch, Mod. Phys. Lett. A 36(14), 2140002 (2021)

    Article  ADS  Google Scholar 

  8. T. Mitra, T. Hossain, S. Banerjee, M.K. Hassan, Chaos. Solitons Fract. 145, 110790 (2021)

    Article  Google Scholar 

  9. N.A.A. Fataf, A. Gowrisankar, S. Banerjee, Phys. Scr. 95(7), 075206 (2020)

    Article  ADS  Google Scholar 

  10. P.K. Prasad, A. Gowrisankar, A. Saha, S. Banerjee, Phys. Scr. 95(6), 065603 (2020)

    Article  ADS  Google Scholar 

  11. S. Banerjee, M.K. Hassan, S. Mukherjee, A. Gowrisankar, Fractal Patterns in Nonlinear Dynamics and Applications (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  12. S. Banerjee, D. Easwaramoorthy, A. Gowrisankar, Fractal Functions. Dimensions and Signal Analysis (Springer, Cham, 2021)

    Book  Google Scholar 

  13. A.K. Golmankhaneh, D. Baleanu, Open Phys. 14(1), 542–550 (2016)

    Article  Google Scholar 

  14. V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Space: Anomalous Transport Models (World Scientific, Singapore, 2017)

    MATH  Google Scholar 

  15. Q. Cao, X. Long, AIMS Math. 5(6), 5955–5968 (2020)

  16. I. Manickam, R. Ramachandran, G. Rajchakit, J. Cao, C. Huang, Nonlinear Anal. Model. Control. 25(5), 726–744 (2020)

    MathSciNet  Google Scholar 

  17. C. Huang, L. Yang, J. Cao, AIMS Math. 5(4), 3378–3390 (2020)

    Article  MathSciNet  Google Scholar 

  18. X. Zhang, H. Hu, Appl. Math. Lett. 107, 106385 (2020)

    Article  MathSciNet  Google Scholar 

  19. J. Brzdek, D. Popa, I. Rasa, B.X. Ulam, Ulam Stability of Operators (Academic Press, London, 2018)

    MATH  Google Scholar 

  20. D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables (Birkhäuser Basel, New York, 1998)

    Book  Google Scholar 

  21. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis (Springer, New York, 2011)

  22. C. Alsina, R. Ger, J. Inequal. Appl. 4(1198), 246904 (1998)

    Article  Google Scholar 

  23. S.-M. Jung, J. Roh, Appl. Math. Lett. 74, 147–153 (2017)

    Article  MathSciNet  Google Scholar 

  24. R. DiMartino, W. Urbina, arXiv preprint arXiv:1403.6554 [math.CA], 1–16 (2014)

  25. K.S. Krane, D. Halliday, Introductory Nuclear Physics (Wiley, New York, 1988)

    Google Scholar 

Download references

Acknowledgements

A.K.G dedicates this article to his supervisor during his Ph.D., Professor A. D. Gangal, to whom he owes all he has learned on the subject of fractal calculus and scientific success, and he also wishes him and his respected family good health and the best.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khalili Golmankhaneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili Golmankhaneh, A., Tunç, C. & Şevli, H. Hyers–Ulam stability on local fractal calculus and radioactive decay. Eur. Phys. J. Spec. Top. 230, 3889–3894 (2021). https://doi.org/10.1140/epjs/s11734-021-00316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00316-5

Navigation