Skip to main content
Log in

On substitution automorphisms with pure singular spectrum

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A sufficient condition for a substitution automorphism to have pure singular spectrum is given in terms of the top Lyapunov exponent of the associated spectral cocycle. As a corollary, singularity of the spectrum is established for an infinite family of self-similar interval exchange transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baake, M., Frank, N.P., Grimm, U., Robinson, E.A., Jr.: Geometric properties of a binary non-Pisot inflation and absence of absolutely continuous diffraction. Stud. Math. 247(2), 109–154 (2019)

    Article  MathSciNet  Google Scholar 

  2. Baake, M., Grimm, U.: Squirals and beyond: substitution tilings with singular continuous spectrum. Ergod. Theory Dyn. Syst. 34, 1077–1102 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baake, M., Grimm, U., Mañibo, N.: Spectral analysis of a family of binary inflation rules. Lett. Math. Phys. 108(8), 1783–1805 (2018)

  4. Baake, M., Gähler, F., Mañibo, N.: Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction. Commun. Math. Phys. 370(2), 591–635 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bartlett, A.: Spectral theory of \({{\mathbb{Z}}}^d\) substitutions. Ergod. Theory Dyn. Syst. 38, 1289–1341 (2018)

    Article  MathSciNet  Google Scholar 

  6. Berend, D., Radin, C.: Are there chaotic tilings? Commun. Math. Phys. 152(2), 215–219 (1993)

    Article  MathSciNet  Google Scholar 

  7. Berlinkov, A., Solomyak, B.: Singular substitutions of constant length. Ergod. Theory Dyn. Syst. 39, 2384–2402 (2019)

    Article  MathSciNet  Google Scholar 

  8. Boyd, D.W.: Kronecker’s theorem and Lehmer’s problem for polynomials in several variables. J. Number Theory 13(1), 116–121 (1981)

    Article  MathSciNet  Google Scholar 

  9. Bufetov, A.I., Sinai, Y.G., Ulcigrai, C.: A condition for continuous spectrum of an interval exchange transformation. Am. Math. Soc. Transl. 2(217), 23–35 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Bufetov, A.I.: Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the Central Limit Theorem for the Teichmüller flow on the moduli space of Abelian differentials. J. Am. Math. Soc. 19(3), 579–623 (2006)

    Article  Google Scholar 

  11. Bufetov, A.I., Solomyak, B.: On the modulus of continuity for spectral measures in substitution dynamics. Adv. Math. 260, 84–129 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bufetov, A.I., Solomyak, B.: A spectral cocycle for substitution systems and translation flows. J. Anal. Math. 141(1), 165–205 (2020)

  13. Camelier, R., Guttierez, C.: Affine interval exchange transformations with wandering intervals. Ergod. Theory Dyn. Syst. 17(6), 1315–1338 (1997)

    Article  MathSciNet  Google Scholar 

  14. Chan, L., Grimm, U.: Spectrum of a Rudin–Shapiro-like sequence. Adv. Appl. Math. 87, 16–23 (2017)

    Article  MathSciNet  Google Scholar 

  15. Chan, L., Grimm, U.: Substitution-based structures with absolutely continuous spectrum. J. Phys. Conf. Ser. 809(1) (2017)

  16. Clark, A., Sadun, L., Short, I.: When size matters: subshifts and their related tiling spaces. Indag. Math. (N.S.) 29(4), 1072–1086 (2018)

  17. Cobo, M., Gutiérrez-Romo, R., Maass, A.: Characterization of minimal sequences associated with self-similar interval exchange maps. Nonlinearity 31(4), 1121–1154 (2018)

    Article  MathSciNet  Google Scholar 

  18. Danilenko, A., Lemańczyk, M.: Spectral multiplicities for ergodic flows. Discrete Contin. Dyn. Syst. 33(9), 4271–4289 (2013)

    Article  MathSciNet  Google Scholar 

  19. Dekking, F.M., Keane, M.: Mixing properties of substitutions. Zeit. Wahr. Verw. Gebiete 42, 23–33 (1978)

    Article  MathSciNet  Google Scholar 

  20. Dworkin, S.: Spectral theory and x-ray diffraction. J. Math. Phys. 34(7), 2965–2967 (1993)

    Article  MathSciNet  Google Scholar 

  21. Everest, G., Ward, T.: Heights of Polynomials and Entropy in Algebraic Dynamics. Springer, London (1999)

    Book  Google Scholar 

  22. Fogg, N.P.: Substitutions in dynamics, arithmetics and combinatorics. In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002)

  23. Frank, N.P.: Substitution sequences in \({{\mathbb{Z}}}^d\) with a non-simple Lebesgue component in the spectrum. Ergod. Theory Dyn. Syst. 23, 519–532 (2003)

    Article  Google Scholar 

  24. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)

    Article  MathSciNet  Google Scholar 

  25. Goldberg, R.: Restrictions of Fourier transforms and extension of Fourier sequences. J. Approx. Theory 3, 149–155 (1970)

    Article  MathSciNet  Google Scholar 

  26. Host, B.: Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Theory Dyn. Syst. 6, 529–540 (1986)

    Article  Google Scholar 

  27. Host, B.: Some results on uniform distribution in the multidimensional torus. Ergod. Theory Dyn. Syst. 20, 439–452 (2000)

    Article  MathSciNet  Google Scholar 

  28. Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. R. Stat. Soc. Ser. B 30, 499–510 (1968)

    MathSciNet  MATH  Google Scholar 

  29. Lanneau, E.: Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surfaces. Contemp. Math. 532, 231–242 (2010)

    Article  MathSciNet  Google Scholar 

  30. Mahler, K.: On some inequalities for polynomials in several variables. J. Lond. Math. Soc. 37, 341–344 (1962)

    Article  MathSciNet  Google Scholar 

  31. Matheus, C., Möller, M., Yoccoz, J.-C.: A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces. Invent. Math. 202(1), 333–425 (2015)

    Article  MathSciNet  Google Scholar 

  32. Meiri, D.: Entropy and uniform distribution of orbits in \({{\mathbb{T}}}^d\). Isr. J. Math. 105, 155–183 (1998)

    Article  MathSciNet  Google Scholar 

  33. Queffelec, M.: Substitution Dynamical Systems-Spectral Analysis, 2nd edn. Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (2010)

  34. Rauzy, G.: Échanges d’intervalles et transformations induites. Acta Arith. 34(4), 315–328 (1979)

    Article  MathSciNet  Google Scholar 

  35. Salem, R.: Algebraic Numbers and Fourier analysis. D. C. Heath and Co., Lexington (1963)

    MATH  Google Scholar 

  36. Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 17(3), 695–738 (1997)

    Article  MathSciNet  Google Scholar 

  37. Solomyak, B.: Dynamics of self-similar tilings. Ergod. Theory Dyn. Syst. 19, 1685 (1999)(erratum)

  38. Steele, J.M.: Kingman’s subadditive ergodic theorem. Ann. Inst. H. Poincaré Probab. Stat. 25(1), 93–98 (1989)

    MathSciNet  MATH  Google Scholar 

  39. Veech, W.A.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. (2) 115(1), 201–242 (1982)

    Article  MathSciNet  Google Scholar 

  40. Viana, M.: Lectures on Interval Exchange Transformations and Teichmüller Flows. Preprint IMPA (2008)

  41. Yoccoz, J.-C.: Interval exchange maps and translation surfaces. In: Homogeneous Flows, Moduli Spaces and Arithmetic. Clay Mathematics Proceedings, vol. 10, pp. 1–69. American Mathematical Society, Providence (2010)

  42. Zorich, A.: Flat surfaces. In: Frontiers in Number Theory, Physics, and Geometry. I, pp. 437–583. Springer, Berlin (2006)

Download references

Acknowledgements

We are deeply grateful to Mike Hochman for fruitful discussions of equidistribution results, to Adam Kanigowski for helpful comments, to Nir Lev for the reference to the paper by R. Goldberg, to Misha Sodin, Rotem Yaari, and the anonymous referee for valuable remarks which helped improve the article. The research of A. Bufetov has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 647133 (ICHAOS). A. Bufetov has also been funded by ANR grant ANR-18-CE40-0035 REPKA. The research of B. Solomyak was supported by the Israel Science Foundation (Grant 911/19). B.S. gratefully acknowledges support from the Simons Center for Geometry and Physics, Stony Brook University, where some of the research for this paper was done.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: On the Mahler measure of a polynomial

Appendix: On the Mahler measure of a polynomial

Mahler [30] defined the measure of a polynomial in several variables as follows:

$$\begin{aligned} M(P):= \exp \int _{{{\mathbb {T}}}^n} \log |P(z_1,\ldots ,z_n)| \,d\mathbf{t}, \end{aligned}$$

where \(\mathbf{t}= (t_1,\ldots ,t_n)\) and \(z_j = e^{2\pi i t_j}\). Now M(P) is called the Mahler measure and

$$\begin{aligned} {{\mathfrak {m}}}(P) = \log M(P) \end{aligned}$$
(A.1)

is the logarithmic Mahler measure of the polynomial P. For a polynomial of a single variable p(z), Jensen’s formula yields

$$\begin{aligned} M(p) = \exp \int _0^1 \log |p(e^{2\pi i t}|\,dt = |a_0|\cdot \prod _{j\ge 1} \max \{|\alpha _j|,1\}, \end{aligned}$$
(A.2)

where \(a_0\) is the leading coefficient and \(\alpha _j\) are the complex zeros of p. Observe that \(M(p)\ge |a_0|\), hence writing

$$\begin{aligned} P(z_1,\ldots ,z_n) = a_0(z_1,\ldots ,z_{n-1}) z_n^k + \cdots + a_k(z_1,\ldots ,z_{n-1}) \end{aligned}$$

and integrating \(\log |P(z_1,\ldots ,z_n)|\) with respect to \(t_n\), we obtain \(M(P)\ge M(a_0)\), and then by induction it follows that

$$\begin{aligned} \textit{if}\ P(z_1,\ldots ,z_n)\ \textit{has integer coefficients, then}\ M(P)\ge 1, \end{aligned}$$
(A.3)

see e.g., [8, p. 117] and [21] for details and for additional information on the Mahler measure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufetov, A.I., Solomyak, B. On substitution automorphisms with pure singular spectrum. Math. Z. 301, 1315–1331 (2022). https://doi.org/10.1007/s00209-021-02941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02941-1

Keywords

Navigation