Skip to main content
Log in

Entropy and uniform distribution of orbits in\(\mathbb{T}\)

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a class of integer sequences {c n } with the property that for everyp-invariant and ergodic positive-entropy measure μ on L 2 \(\mathbb{T}\), {c n x (mod 1)} is uniformly distributed for μ-almost everyx. This extends a result of B. Host, who proved this for the sequence {q n}, forq relatively prime top. Our class of sequences includes, for instance, the sequencec n =Мf i (n)q ni , where the numbersq i are distinct and are relatively prime top andf i are any polynomials. More generally, recursion sequences for which the free coefficient of the recursion polynomial is relatively prime top are in this class as well, provided they satisfy a simple irreducibility condition.

In the multi-dimensional case we derive sufficient conditions for a pair of endomorphisms\(\mathbb{T}^d \) (withA diagonal) and anA-invariant and ergodic measure μ, such thatB-orbits of the form {B n ω} are uniformly distributed for μ-almost every\(\mathbb{T}^d \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Berend,Multi-invariant sets on tori, Transactions of the American Mathematical Society280 (1983), 509–532.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. D. Boshernitzan,Elementary proof of Furstenberg's diophantine result, Proceedings of the American Mathematical Society122 (1994), 67–70.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Feldman,A generalization of a result of Lyons about measures in [0,1], Israel Journal of Mathematics81 (1993), 281–287.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Furstenberg,Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Mathematical Systems Theory1 (1967), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Host,Nombres normaux, entropie, translations, Israel Journal of Mathematics91 (1995), 419–428.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Johnson,Measures on the circle invariant under multiplication by a nonlacunary subgroup of the integers, Israel Journal of Mathematics77 (1992), 211–240.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Johnson and D. Rudolph,Convergence under x p of x q invariant measures on the circle, Advances in Mathematics115 (1995), 117–140.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Kenyon,Projecting the one-dimensional Sierpinski gasket, Israel Journal of Mathematics97 (1997), 221–238.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Kenyon and Y. Peres,Intersecting random translates of invariant Cantor sets, Inventiones Mathematicae104 (1991), 601–629.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Koblitz,p-Adic Numbers, p-Adic Analysis, and Zeta-functions, second edition, Springer-Verlag, Berlin, 1977.

    MATH  Google Scholar 

  11. B. Kra,A generalization of Furstenberg's Diophantine theorem, Proceedings of the American Mathematical Society, to appear.

  12. E. Lindenstrauss, D. Meiri and Y. Peres,Entropy of convolutions on the circle, preprint (1997).

  13. R. Lyons,On measures simultaneously 2- and 3-invariant, Israel Journal of Mathematics61 (1988), 219–224.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Meiri and Y. Peres,Bi-invariant sets and measures have integer Hausdorff dimension, Ergodic Theory and Dynamical Systems, to appear.

  15. W. Parry,Topics in Ergodic Theory, Cambridge University Press, 1981.

  16. K. Petersen,Ergodic Theory, Cambridge Studies in Advanced Mathematics2, Cambridge University Press, 1983.

  17. D. J. Rudolph,×2 and ×3 invariant measures and entropy, Ergodic Theory and Dynamical Systems10 (1990), 395–406.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. H. Schikhof,Ultrametric Calculus, Cambridge Studies in Advanced Mathematics4, Cambridge University Press, 1984.

  19. P. Walters,An Introduction to Ergodic Theory, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Meiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiri, D. Entropy and uniform distribution of orbits in\(\mathbb{T}\) . Isr. J. Math. 105, 155–183 (1998). https://doi.org/10.1007/BF02780327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780327

Keywords

Navigation