Skip to main content
Log in

Hypergeometric groups and dynamics on K3 surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A hypergeometric group is a matrix group modeled on the monodromy group of a generalized hypergeometric differential equation. This article presents a fruitful interaction between the theory of hypergeometric groups and dynamics on K3 surfaces by showing that a certain class of hypergeometric groups and related lattices lead to a lot of K3 surface automorphisms of positive entropy, especially such automorphisms with Siegel disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Apostol, T.M.: Resultants of cyclotomic polynomials. Proc. Am. Math. Soc. 24(3), 457–462 (1970)

    Article  MathSciNet  Google Scholar 

  2. Bach, E., Shallit, J.: Algorithmic Number Theory, Vol I: Efficient Algorithms, MIT Press Series in the Foundations of Computing. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact Complex Surfaces, Second Enlarged Springer, Heidelberg (2004)

    Book  Google Scholar 

  4. Beukers, F., Heckman, G.J.: Monodromy for the hypergeometric function \({}_nF_{n-1}\). Invent. Math. 95, 325–354 (1989)

    Article  MathSciNet  Google Scholar 

  5. Cantat, S.: Dynamique des automorphismes des surface K3. Acta Math. 187(1), 1–57 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dinh, T.-C., Nguyên, V.-A., Truong, T.T.: Growth of the number of periodic points for meromorphic maps. Bull. Lond. Math. Soc. 49, 947–964 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fuchs, E., Meiri, C., Sarnak, P.: Hyperbolic monodoromy groups for the hypergeometric equation and Cartan involutions. J. Eur. Math. Soc. 16(8), 1617–1671 (2014)

    Article  MathSciNet  Google Scholar 

  8. Gromov, M.: On the entropy of holomorphic maps. L’Enseignement Math. 49, 217–235 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Gross, B., McMullen, C.T.: Automorphisms of even unimodular lattices and unramified Salem numbers. J. Algebra 257, 265–290 (2002)

    Article  MathSciNet  Google Scholar 

  10. Heckman, G.J.: Tsinghua Lectures on Hypergeometric Functions. Radboud University of Nijmegen, Nijmegen (2015)

    Google Scholar 

  11. Hironaka, E.: What is \(\dots \) Lehmer’s number? Not. Am. Math. Soc. 56(3), 374–375 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, GTM 9. Springer, New York (1972)

    Book  Google Scholar 

  13. Iwasaki, K., Takada, Y.: Mathematica Programs for Hypergeometric Groups and Dynamics on K3 Surfaces. Hokkaido University. https://www.math.sci.hokudai.ac.jp/~iwasaki/ (2021)

  14. Iwasaki, K., Uehara, T.: Periodic points for area-preserving birational maps of surfaces. Math. Z. 266(2), 289–318 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kato, T.: Perturbation Theorey for Linear Operators. Springer, Berlin (1980)

    Google Scholar 

  16. Lehmer, D.H.: Factorization of certain cyclotomic functions. Ann. Math. (2) 34, 461–479 (1933)

    Article  MathSciNet  Google Scholar 

  17. Levelt, A.H.M.: Hypergeometric Functions, Ph.D. thesis, University of Amsterdam (1961)

  18. McMullen, C.T.: Dynamics on K3 surfaces: Salem numbers and Siegel disks. J. Reine Angew. Math. 545, 201–233 (2002)

    MathSciNet  MATH  Google Scholar 

  19. McMullen, C.T.: Dynamics on blowups of the projective plane. Publ. Math. IHES 105, 49–89 (2007)

    Article  MathSciNet  Google Scholar 

  20. McMullen, C.T.: K3 surfaces, entropy and glue. J. Reine Angew. Math. 658, 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  21. McMullen, C.T.: Automorphisms of projective K3 surfaces with minimum entropy. Invent. Math. 203, 179–215 (2016)

    Article  MathSciNet  Google Scholar 

  22. Oguiso, K.: The third smallest Salem number in automorphisms of K3 surfaces. Adv. Stud. Pure Math. 60, 331–360 (2010)

    Article  MathSciNet  Google Scholar 

  23. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  24. Saito, S.: General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings. Am. J. Math. 109(6), 1009–1042 (1987)

    Article  MathSciNet  Google Scholar 

  25. Salem, R.: Algebraic Numbers and Fourier Analysis. D.C. Heath and Company, Boston (1963)

    MATH  Google Scholar 

  26. Toledo, D.: On the Atiyah–Bott formula for isolated fixed points. J. Differ. Geom. 8, 401–436 (1973)

    Article  MathSciNet  Google Scholar 

  27. Toledo, D., Tong, Y.L.: Duality and intersection theory in complex manifolds. II. The holomorphic Lefschetz formula. Ann. Math. (2) 108(3), 519–538 (1978)

    Article  MathSciNet  Google Scholar 

  28. Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–300 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19K03575, JP21J20107. The authors thank Takato Uehara for fruitful discussions. Their appreciations are also due to anonymous reviewers whose questions and comments led to the discussion in Sect. 10 as well as to a better presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsunori Iwasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Calculations of resultants

We give a proof of the formulas in (31), which relies on the following lemma.

Lemma A.1

Let f(z) and g(z) be monic palindromic polynomials of even degrees. If F(w) and G(w) are the trace polynomials of f(z) and g(z) respectively, then \(\mathrm {Res}(f, g) = \mathrm {Res}(F, G)^2\).

Proof

We have \(f(z) = z^m F(z+ z^{-1})\) and \(g(z) = z^n G(z+ z^{-1})\), where \(\deg F(w) = m\) and \(\deg G(w) = n\). Let \(F(w) = \prod _{i=1}^m (w - A_i)\) and \(G(w) = \prod _{j=1}^n (w - B_j)\). Set \(\alpha _i + \alpha _i^{-1} = A_i\) and \(\beta _j + \beta _j^{-1} = B_j\). We then have

$$\begin{aligned} f(z) = z^m \prod _{i=1}^m (z + z^{-1}-\alpha _i-\alpha _i^{-1}) = \prod _{i=1}^m \{ z^2 - (\alpha _i + \alpha _i^{-1}) z + 1\} = \prod _{i=1}^m (z-\alpha _i)(z-\alpha _i^{-1}), \end{aligned}$$

and similarly \(g(z) = \prod _{j=1}^n (z-\beta _j)(z-\beta _j^{-1})\). Setting \(\varDelta _{i j} := (\alpha _i - \beta _j) (\alpha _i - \beta _j^{-1}) (\alpha _i^{-1} - \beta _j) (\alpha _i^{-1} - \beta _j^{-1})\) we have

$$\begin{aligned} \varDelta _{i j}&= (\alpha _i-\beta _j) \cdot \dfrac{\alpha _i \beta _j -1}{\beta _j} \cdot \dfrac{1-\alpha _i \beta _j}{\alpha _i} \cdot \dfrac{\beta _j-\alpha _i}{\alpha _i \beta _j} = \left\{ \dfrac{(\alpha _i-\beta _j)(\alpha _i \beta _j -1)}{\alpha _i \beta _j} \right\} ^2, \\[1mm] A_i-B_j&= \alpha _i + \dfrac{1}{\alpha _i} - \beta _j - \dfrac{1}{\beta _j} = \alpha _i-\beta _j + \dfrac{\beta _j-\alpha _i}{\alpha _i \beta _j} = \dfrac{(\alpha _i-\beta _j)(\alpha _i \beta _j -1)}{\alpha _i \beta _j}, \end{aligned}$$

and hence \(\varDelta _{i j} = (A_i - B_j)^2\). Thus \(\mathrm {Res}(f, g) = \prod _{i=1}^m \prod _{j=1}^n \varDelta _{i j} = \prod _{i=1}^m \prod _{j=1}^n (A_i - B_j)^2 = \mathrm {Res}(F, G)^2\). \(\square \)

Proof of Formulas (31a) and (31b). We use the following properties of the resultant: if \(\deg f = m\) and \(\deg g = n\) then \(\mathrm {Res}(g, f) = (-1)^{m n} \mathrm {Res}(f, g)\); \(\mathrm {Res}(f_1 f_2, \, g) = \mathrm {Res}(f_1, g) \cdot \mathrm {Res}(f_2, g)\); \(\mathrm {Res}(z-\alpha , g) = g(\alpha )\) for \(\alpha \in {\mathbb {C}}\). Put \(\varphi _1(z) := z^{N-1} \Phi (z+z^{-1})\) in (30a). Then it follows from these properties and Lemma A.1 that

$$\begin{aligned} \mathrm {Res}(\varphi , \psi ) = \psi (1) \cdot \psi (-1) \cdot \mathrm {Res}(\varphi _1, \psi ) = \Psi (2) \cdot (-1)^N \Psi (-2) \cdot \mathrm {Res}(\Phi , \Psi )^2, \end{aligned}$$

which verifies (31a). Similarly, putting \(\varphi _1(z) := z^N \Phi (z+z^{-1})\) and \(\psi _1(z) := z^N \Psi (z+z^{-1})\) in (30b) we have

$$\begin{aligned} \mathrm {Res}(\varphi , \psi )&= (z+1)|_{z=1} \cdot \psi _1(1) \cdot \varphi _1(-1) \cdot \mathrm {Res}(\varphi _1, \psi _1)\\&= 2 \cdot \Psi (2) \cdot (-1)^N \Phi (-2) \cdot \mathrm {Res}(\Phi , \Psi )^2, \end{aligned}$$

which proves (31b) as desired. \(\square \)

Saito’s indices

We define the indices \(\nu _p(f)\) for \(p \in X_0(f)\) and \(\nu _C(f)\) for \(C \in X_1(f)\) in Saito’s formula (69), where \(X_0(f)\) is the set of all fixed points and \(X_1(f)\) is the set of all irreducible fixed curves of f. We also introduce the decomposition \(X_1(f) = X_{\mathrm {I}}(f) \amalg X_{\mathrm {II}}(f)\). These tasks are mostly ring-theoretic. For details see [24] and [14, §3].

Let \(A := {\mathbb {C}}[\![z_1, z_2]\!]\) and \(\mathfrak {m}\) be its maximal ideal. Let \(\sigma : A \rightarrow A\) be a nontrivial ring-endomorphism continuous in \(\mathfrak {m}\)-adic topology. It can be expressed as \(\sigma (z_i) = z_i + g \cdot h_i\), \(i = 1, 2\), for some g, \(h_1\), \(h_2 \in A\), where g is nonzero and \(h_1\), \(h_2\) are coprime. Consider the ideals \(\mathfrak {a} = (g)\) and \(\mathfrak {b} := (h_1, h_2)\) in A. Since \(h_1\) and \(h_2\) are coprime,

$$\begin{aligned} \delta (\sigma ) := \dim _{{\mathbb {C}}} (A/\mathfrak {b}) < \infty . \end{aligned}$$

Let \(\varLambda (\sigma )\) be the set of all prime ideals \(\mathfrak {p}\) of height 1 in A that divides \(\mathfrak {a}\). we define

$$\begin{aligned} \nu _{\mathfrak {p}}(\sigma ) := \max \{ m \in {\mathbb {Z}}_{\ge 1} : \mathfrak {a} \subset \mathfrak {p}^m \} \qquad \hbox {for each} \quad \mathfrak {p} \in \varLambda (\sigma ). \end{aligned}$$
(79)

Let \(\kappa [\mathfrak {p}]\) be the normalization of the ring \(A/\mathfrak {p}\). It is isomorphic to \({\mathbb {C}}[\![t]\!]\) for some prime element t. Let

$$\begin{aligned} {\hat{\Omega }}^1_{A/{\mathbb {C}}} := \varprojlim _{n} \Omega ^1_{A_n/{\mathbb {C}}}, \qquad {\hat{\Omega }}^1_{\kappa [\mathfrak {p}]/{\mathbb {C}}} := \varprojlim _{n} \Omega ^1_{\kappa [\mathfrak {p}]_n/{\mathbb {C}}}, \end{aligned}$$

where \(A_n := A/\mathfrak {m}^n\) and \(\kappa [\mathfrak {p}]_n := {\mathbb {C}}[\![t]\!]/(t)^n\). Then \({\hat{\Omega }}^1_{A/{\mathbb {C}}} = A \, d z_1 \oplus A \, d z_2\) and \({\hat{\Omega }}^1_{\kappa [\mathfrak {p}]/{\mathbb {C}}} = \kappa [\mathfrak {p}] \, d t\). Let

$$\begin{aligned} \tau _{\mathfrak {p}} : {\hat{\Omega }}^1_{A/{\mathbb {C}}} \rightarrow {\hat{\Omega }}^1_{\kappa (\mathfrak {p})/{\mathbb {C}}} := {\hat{\Omega }}^1_{\kappa [\mathfrak {p}]/{\mathbb {C}}} \otimes _{\kappa [\mathfrak {p}]} \kappa (\mathfrak {p}) \end{aligned}$$

be the homomorphism induced from the natural map \(A \rightarrow \kappa (\mathfrak {p})\), where \(\kappa (\mathfrak {p})\) is the quotient field of \(\kappa [\mathfrak {p}]\). Put

$$\begin{aligned} \varLambda _{\mathrm {I}}(\sigma ) := \{ \mathfrak {p} \in \varLambda (\sigma ) : \tau _{\mathfrak {p}}(\varpi _{\sigma }) \ne 0\}, \qquad \varLambda _{\mathrm {II}}(\sigma ) := \{ \mathfrak {p} \in \varLambda (\sigma ) : \tau _{\mathfrak {p}}(\varpi _{\sigma }) = 0\}, \end{aligned}$$

where \(\varpi _{\sigma } := h_2 \cdot d z_1 - h_1 \cdot d z_2 \in {\hat{\Omega }}^1_{A/{\mathbb {C}}}\). There exists a nonzero element \(a \in \kappa [\mathfrak {p}]\) such that

$$\begin{aligned} \tau _{\mathfrak {p}}(\varpi _{\sigma }) = a \cdot d t \quad \hbox {if } \mathfrak {p} \in \varLambda _{\mathrm {I}}(\sigma ); \qquad \varpi _{\sigma } = a \cdot d u \quad \hbox {if } \mathfrak {p} \in \varLambda _{\mathrm {II}}(\sigma ), \end{aligned}$$

where \(u \in A\) is a prime element such that \(\mathfrak {p} = (u)\). Under the identification \(\kappa [\mathfrak {p}] = {\mathbb {C}}[\![t]\!]\) we define

$$\begin{aligned} \mu _{\mathfrak {p}}(\sigma )&:= \max \{ m \in {\mathbb {Z}}_{\ge 0} : (a) \subset (t)^m \}, \qquad \hbox {for each} \quad \mathfrak {p} \in \varLambda (\sigma ), \nonumber \\[1mm] \nu _A(\sigma )&:= \delta (\sigma ) + \sum _{\mathfrak {p} \in \varLambda (\sigma )} \nu _{\mathfrak {p}}(\sigma ) \cdot \mu _{\mathfrak {p}}(\sigma ). \end{aligned}$$
(80)

Back in the geometric situation we first define \(\nu _p(f)\) at \(p \in X_0(f)\). The completion \({\hat{{\mathcal {O}}}}_{X, p}\) of the local ring \({\mathcal {O}}_{X, p}\) is identified with \(A = {\mathbb {C}}[\![z_1, z_2]\!]\) and the map f induces a nontrivial ring-endomorphism \(\sigma := f^*_p : A \rightarrow A\) continuous in \(\mathfrak {m}\)-adic topology. Then \(\nu _p(f)\) is defined to be \(\nu _A(\sigma )\) in (80). Next we define \(\nu _C(f)\) for \(C \in X_1(f)\) as follows. Take a point \(p \in C\) and consider \(\sigma := f^*_p : A \rightarrow A\) again upon identifying \({\hat{{\mathcal {O}}}}_{X, p}\) with A. Let \(C_p\) be the germ of C at p and let \(\varLambda (C_p)\) be the set of all prime ideals in A determined by the irreducible components of \(C_p\). Then one has \(\varLambda (C_p) \subset \varLambda (\sigma )\), so \(\nu _{\mathfrak {p}}(\sigma )\) makes sense for any \(\mathfrak {p} \in \varLambda (C_p)\) via (79). Moreover the value of \( \nu _{\mathfrak {p}}(\sigma )\) is independent of \(p \in C\) and \(\mathfrak {p} \in \varLambda (C_p)\). This common value is just \(\nu _C(f)\) by definition. We can also show that either \(\varLambda (C_p) \subset \varLambda _{\mathrm {I}}(\sigma )\) or \(\varLambda (C_p) \subset \varLambda _{\mathrm {II}}(\sigma )\) holds with this dichotomy independent of \(p \in C\). We have \(C \in X_{\mathrm {I}}(f)\) in the former case while \(C \in X_{\mathrm {II}}(f)\) in the latter case. If C is smooth and transverse then \(C \in X_{\mathrm {I}}(f)\).

Symbols for hypergeometric groups

There are a lot of symbols in the sections (Sects. 26) concerning hypergeometric groups. Here is a list of them with brief explanations including the places where they appear for the first time.

  • H, hypergeometric group in \(\mathrm {GL}(n, {\mathbb {C}})\), Sect. 2,

  • A, B, matrices generating H, Sect. 2,

  • \(\varvec{a}= \{a_1, \dots , a_n \}\), eigenvalues of A, Sect. 2,

  • \(\varvec{b}= \{b_1, \dots , b_n\}\), eigenvalues of B, Sect. 2,

  • \(a^{\dagger } := {\bar{a}}^{-1}\), reciprocal of conjugate of \(a \in {\mathbb {C}}^{\times }\), Sect. 2,

  • \(\varphi (z)\), characteristic polynomials of A, Sect. 2,

  • \(\psi (z)\), characteristic polynomials of B, Sect. 2,

  • \(\mathrm {Res}(\varphi , \psi )\), resultant of \(\varphi (z)\) and \(\psi (z)\), Sect. 2,

  • \(C := A^{-1}B\), complex reflection, \(c := \det C\), Sect. 2,

  • \(\varvec{r}\), eigenvector of C corresponding to c, Sect. 2,

  • \((\, \cdot \, , \, \cdot \,)\), H-invariant Hermitian form, Sect. 2,

  • \(\varvec{a}_{\mathrm {on}}\)/\(\varvec{a}_{\mathrm {off}}\), parts of \(\varvec{a}\) lying on/off \(S^1\), Sect. 3,

  • \(\varvec{b}_{\mathrm {on}}\)/\(\varvec{b}_{\mathrm {off}}\), parts of \(\varvec{b}\) lying on/off \(S^1\), Sect. 3,

  • \(\varvec{a}_1, \dots , \varvec{a}_t\), clusters in \(\varvec{a}_{\mathrm {on}}\), Sect. 3,

  • \(\varvec{b}_1, \dots , \varvec{b}_t\), clusters in \(\varvec{b}_{\mathrm {on}}\), Sect. 3,

  • \([\varvec{a}_{\mathrm {on}}]\), \([\varvec{b}_{\mathrm {on}}]\), configurations of \(\varvec{a}_{\mathrm {on}}\), \(\varvec{b}_{\mathrm {on}}\), Sect. 3,

  • \(2 \pi \alpha _i\), \(2 \pi \beta _i\), arguments of \(a_i\), \(b_i\), Sect. 3,

  • \(\gamma := \beta _1 + \cdots + \beta _n -(\alpha _1+\cdots +\alpha _n)\), Sect. 3,

  • \(\varepsilon = \pm 1\), signature of \(\sin \pi \gamma \), Sect. 3.1,

  • \(p-q\), index of invariant Hermitian form, Sect. 3.1,

  • \(E(\lambda )\), generalized eigenspace for \(\lambda \in \varvec{a}\cup \varvec{b}\), Sect. 3.3,

  • \(m(\lambda ) := \dim E(\lambda )\), multiplicity of \(\lambda \), Sect. 3.3,

  • \(\mathrm {idx}(\lambda )\), local index at \(\lambda \in \varvec{a}_{\mathrm {on}}\cup \varvec{b}_{\mathrm {on}}\), Sect. 3.3,

  • \(E(\mu , \mu ^{\dagger }) := E(\mu ) \oplus E(\mu ^{\dagger })\) for \(\mu \in \varvec{a}_{\mathrm {off}}\cup \varvec{b}_{\mathrm {off}}\), Sect. 3.3,

  • \(\Phi (w)\), trace polynomials of \(\varphi (z)\), Sect. 4.1,

  • \(\Psi (w)\), trace polynomials of \(\psi (z)\), Sect. 4.1,

  • \(M(\lambda )\), multiplicity of \(w -\lambda \) in \(\Phi (w) \cdot \Psi (w) \), Sect. 4.1,

  • \(\varvec{A}\), \(\varvec{B}\), multi-sets of roots of \(\Phi (w)\), \(\Psi (w)\), Sect. 4.2,

  • \(\varvec{A}_{\mathrm {on}}\)/\(\varvec{A}_{\mathrm {off}}\), parts of \(\varvec{A}\) lying on/off \([-2, \, 2]\), Sect. 4.2,

  • \(\varvec{B}_{\mathrm {on}}\)/\(\varvec{B}_{\mathrm {off}}\), parts of \(\varvec{B}\) lying on/off \([-2, \, 2]\), Sect. 4.2,

  • \(\varvec{A}_1, \dots , \varvec{A}_{s+1}\), trace clusters in \(\varvec{A}_{\mathrm {on}}\), Sect. 4.2,

  • \(\varvec{B}_1, \dots , \varvec{B}_s\), trace clusters in \(\varvec{B}_{\mathrm {on}}\), Sect. 4.2,

  • \(\varvec{A}_{\mathrm {in}}:= \varvec{A}_2 \cup \cdots \cup \varvec{A}_s\), Sect. 4.2,

  • \(\delta := (-1)^{ |\varvec{A}_{\mathrm {in}}| + |\varvec{B}_{\mathrm {on}} | +1}\) when n is even, Sect. 4.2,

  • \(\mathrm {Idx}(\tau )\), local index at \(\tau \in \varvec{A}_{\mathrm {on}}\cup \varvec{B}_{\mathrm {on}}\), Sect. 4.3,

  • \(\varvec{A}_1^{\circ } := (\varvec{A}_1)_{<2}\), \(\varvec{A}_{s+1}^{\circ } := (\varvec{A}_{s+1})_{>-2}\), Sect. 4.3,

  • \(\mathrm {Idx}({\mathcal {X}}) := \sum _{\tau \in {\mathcal {X}}} \mathrm {Idx}(\tau )\), local index on \({\mathcal {X}}\), Sect. 4.3,

  • L, hypergeometric lattice, Sect. 5,

  • \(\mathrm {C}_k(z)\), kth cyclotomic polynomial, Sect. 5.2,

  • \(\mathrm {CT}_k(w)\), kth cyclotomic trace polynomial, Sect. 5.2,

  • \(\lambda _i\), Salem numbers from McMullen [18], Sect. 5.3,

  • \(S_i(z)\), minimal polynomial of \(\lambda _i\), Sect. 5.3,

  • \(R_i(w)\), minimal trace polynomial of \(\lambda _i\), Sect. 5.3,

  • \(\mathrm {L}(z)\), Lehmer’s polynomial, Sect. 5.3,

  • \(\mathrm {LT}(w)\), Lehmer’s trace polynomial, Sect. 5.3,

  • \(V(\lambda )\), \(\lambda \)-eigenspace of A in narrow sense, Sect. 6.2,

  • \(\tau = \tau (A)\), \(\tau (B)\), special traces of A, B, Sect. 6.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, K., Takada, Y. Hypergeometric groups and dynamics on K3 surfaces. Math. Z. 301, 835–891 (2022). https://doi.org/10.1007/s00209-021-02912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02912-6

Keywords

Mathematics Subject Classification

Navigation