Skip to main content
Log in

Quantitative non-vanishing of central values of certain L-functions on \({{\text {GL}}}(2)\times {{\text {GL}}}(3)\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\phi \) be an even Hecke–Maass cusp form on \({{\text {SL}}}_2({\mathbb {Z}})\) whose L-function does not vanish at the center of the functional equation. In this article, we obtain an exact formula of the average of triple products of \(\phi \), f and \({\bar{f}}\), where f runs over an orthonormal basis \(H_k\) of Hecke eigen elliptic cusp forms on \({{\text {SL}}}_2({\mathbb {Z}})\) of a fixed weight \(k\geqslant 4\). As an application, we prove a quantitative non-vanishing results on the central values for the family of degree 6 L-functions \(L(s,\phi \times \mathrm{Ad}\,f)\) with f in the union of \(H_k\) \((\mathrm{K}\leqslant k<2\mathrm{K})\) as \(\mathrm{K}\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As a matter of fact, in [14] this formula is shown only when \(\psi \) is the characteristic function of a bounded measurable set of Y. The proof works for general \(\psi \).

  2. On the left-hand side of the formula in [25, Theorem 10.1], \((-1)^{\#S}\) should be removed.

References

  1. Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies Number 94. Princeton University Press, Princeton (1980)

    MATH  Google Scholar 

  2. Bump, D.: Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  3. Friedberg, S., Hoffstein, J.: Nonvanishing theorems for automorphic \(L\)-functions on \({\rm GL}(2)\). Ann. Math. (2) 142(2), 385–423 (1995)

    Article  MathSciNet  Google Scholar 

  4. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \({\rm {GL}}(2)\) and \({\rm GL}(3)\). Ann. Sci. Ecole Normale Sup. 4 série 11, 471–552 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 7th edn. Academic Press Inc, New York (2007)

    MATH  Google Scholar 

  6. Hejhal, D.: The Selberg Trace Formula for \({\rm PSL}(2, R)\). Lecture Notes in Mathematics, 1001, vol. 2. Springer, Berlin (1983)

    Book  Google Scholar 

  7. Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. Math. 172, 1517–1528 (2010)

    Article  MathSciNet  Google Scholar 

  8. Ichino, A.: Trilinear forms and the central values of triple product \(L\)-functions. Duke Math. J. 145(2), 281–307 (2008)

    Article  MathSciNet  Google Scholar 

  9. Januszewski, F.: Non-abelian\(p\)-adic Rankin-Selberg\(L\)-functions and non-vanishing of central\(L\)-values, preprint. arxiv:1708.02616

  10. Katok, S., Sarnak, P.: Heegner points, cycles and Maass forms. Israel J. Math. 84, 193–227 (1993)

    Article  MathSciNet  Google Scholar 

  11. Kim, H.: Functoriality for the exterior square of \(GL_4\) and symmetric fourth of \(GL_2\), with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak. J. Am. Math. Soc. 16(1), 139–183 (2003)

    Article  Google Scholar 

  12. Li, X.: The central value of the Rankin-Selberg \(L\)-functions. Geom. Funct. Anal. 18, 1660–1695 (2009)

    Article  MathSciNet  Google Scholar 

  13. Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2) 1(163), 165–219 (2006)

    Article  MathSciNet  Google Scholar 

  14. Luo, W.: Equidistribution of Hecke eigenforms on the modular surface. Proc. Am. Math. Soc. 131(1), 21–27 (2003)

    Article  MathSciNet  Google Scholar 

  15. Luo, W., Sarnak, P.: Quantum variance for Hecke eigenforms. Ann. Sci. École Norm. Sup. (4) 5(37), 769–799 (2004)

    Article  MathSciNet  Google Scholar 

  16. Martin, K., Whitehouse, D.: Central \(L\)-values and toric periods for \({\rm GL}(2)\). Int. Math. Res. Not. IMRN 2009(1), 141–191 (2008). (Art. ID rnn127)

    Article  MathSciNet  Google Scholar 

  17. Magnus, W., Oberhettinger, F., Soni, R.: Formulas and Theorems for the Special Functions of Mathematical Physics (Third edition). In: Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, vol. 52. Springer, New York (1966)

    Google Scholar 

  18. Motohashi, Y.: Spectral mean values of Maass wave form \(L\)-functions. J. Number Theory 42(3), 258–284 (1992)

    Article  MathSciNet  Google Scholar 

  19. Popa, A.A.: Central values of Rankin \(L\)-series over real quadratic fields. Composition Math. 142, 811–866 (2006)

    Article  MathSciNet  Google Scholar 

  20. Reznikov, A.: Non-vanishing of periods of automorphic functions. Forum Math. 13, 485–493 (2001)

    Article  MathSciNet  Google Scholar 

  21. Roelcke, W.: Über die Wellengleichung bei Grenzkreisgruppen erster Art. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955 (1953/1955), 159–267 (1956)

  22. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161(1), 195–213 (1994)

    Article  MathSciNet  Google Scholar 

  23. Sarnak, P., Zhao, P.: The quantum variance of the modular surface, With an appendix by Michael Woodbury. Ann. Sci. Éc. Norm. Supér. (4) 5(52), 1155–1200 (2019)

    Article  Google Scholar 

  24. Soundararajan, K.: Quantum unique ergodicity for \({\rm SL}_2(\mathbb{Z})\backslash \mathbb{H}\). Ann. Math. 2nd Ser. 172, 1529–1538 (2010)

    Article  Google Scholar 

  25. Sugiyama, S., Tsuzuki, M.: An explicit trace formula of Jacquet-Zagier type for Hilbert modular forms. J. Funct. Anal. 275(11), 2978–3064 (2018)

    Article  MathSciNet  Google Scholar 

  26. Waldspurger, J.-L.: Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de symetrie. Comp. Math. 54, 173–242 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Watson, T.: Rankin triple products and quantum chaos, Ph.D Thesis (Princeton, 2002). arxiv:0810.0425

  28. Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lecture Notes in Math, vol. 627, pp. 105–169. Springer, New York (1977)

    MATH  Google Scholar 

  29. Zagier, D.: Eisenstein series and the Riemann zeta-function, automorphic forms, representation theory and arithmetic. Bombay,: Tata Inst. Fund. Res. Studies in Math., 10, Tata Inst. Fundamental Res. Bombay 1981, 275–301 (1979)

    Google Scholar 

  30. Zhang, S.-W.: Gross-Zagier formula for \({\rm GL}_2\). Asian J. Math. 5, 183–290 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for careful reading of the draft. The first author was supported by Grant-in-Aid for Research Activity Start-up 18H05835. The second author was supported by Grant-in-Aid for Scientific research (C) 15K04795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Sugiyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, S., Tsuzuki, M. Quantitative non-vanishing of central values of certain L-functions on \({{\text {GL}}}(2)\times {{\text {GL}}}(3)\). Math. Z. 301, 1447–1479 (2022). https://doi.org/10.1007/s00209-021-02886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02886-5

Keywords

Mathematics Subject Classification

Navigation