Skip to main content
Log in

On the asymptotics of coefficients of Rankin–Selberg L-functions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group \(SL(2,\mathbb{Z})\). We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for

$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\ \sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$

and

$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$

where \(\varphi>0\) and h is a fixed positive integer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Amri, Simultaneous sign change and equidistribution of signs of Fourier coefficients of two cusp forms, Arch. Math., 111 (2018), 257–266.

  2. J. Andrade and K. Smith, On the pairwise maxima of generalised divisor functions, Q. J. Math., 69 (2018), 943–950.

  3. M. Bànescu and D. Popa, A multiple Abel summation formula and asymptotic evaluations for multiple sums, Int. J. Number Theory, 14 (2018), 1197–1210.

  4. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math., 76 (1962), 93–136.

  5. H. Davenport, On certain exponential sums, J. Reine Angew. Math., 169 (1933), 158–176.

  6. P. Deligne, La Conjecture de Weil, I, Publ. Math. IHES, 43 (1974), 273–307.

  7. O. M. Fomenko, Fourier coefficients of cusp forms and automorphic L-functions, J. Math. Sci., 95 (1999), 2295–2316.

  8. E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 199–224.

  9. K. Henriot, Nair–Tenenbaum bounds uniform with respect to the discriminnant, Math. Proc. Cambidge Philos. Soc., 152 (2012), 405–424.

  10. R. Holowinsky, A sieve method for shifted convolution sums, Duke Math. J., 146 (2009), 401–448.

  11. G. D. Hua, Mean value estimate of pairwise maxima of Hecke eigenvalues, Adv. Math. (China), 50 (2021), 117–124.

  12. Y. J. Jiang and G. S. Lü, On sums of Fourier coefficients of Maass cusp forms, Int. J. Number Theory, 13 (2017), 1233–1243.

  13. I. Kátai, On the local behaviour of the function d(n), Mat. Lapok, 18 (1967), 297–302 (in Hungarian).

  14. H. H. Kim, Functoriality for the exterior square of GL2 and the symmetric fourth of GL2 (with Appendix 1 by D. Ramakrishnan and Appendix 2 by H. H. Kim and P. Sarnak), J. Amer. Math. Soc., 16 (2003), 139–183.

  15. H. D. Kloosterman, Asymptotische Formeln für die Fourier-koeffizienten ganzer Modulformen, Abh. Math. Sem. Univ. Hamburg, 5 (1927), 337–352.

  16. M. Kühleitner and W. G. Nowak, An omega theorem for a class of arithmetic functions, Math. Nachr., 165 (1994), 79–98.

  17. H. X. Lao, The cancellation of Fourier coefficients of cusp forms over different sparse sequences, Acta Math. Sin. (Engl. Ser.), 29 (2013), 1963–1972.

  18. H. X. Lao and H. B. Wei, Ω-result on coefficients of automorphic L-functions over sparse sequences, J. Korean Math. Soc., 52 (2015), 945–954.

  19. H. X. Lao, M. McKee and Y. B. Ye, Asymptotics for cuspidal representations by functoriality from GL(2), J. Number Theory, 164 (2016), 323–342.

  20. H. X. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71.

  21. Y.-K. Lau and J. Wu, A density theorem on automorphic L-functions and some applications, Trans. Amer. Math. Soc., 358 (2006), 441–472.

  22. Y.-K. Lau, G. S. Lü and J. Wu, Integral power sums of Hecke eigenvalues, Acta Arith., 150 (2011), 193–207.

  23. Y.-K. Lau and G. S. Lü, Sums of Fourier coefficients of cusp forms, Q. J. Math., 62 (2011), 687–716.

  24. H. F. Liu, Mean value estimates of the coefficients of product L-functions, Acta Math. Hungar., 156 (2018), 102–111.

  25. G. S. Lü, On general divisor problems involving Hecke eigenvalues, Acta Math. Hungar., 135 (2012), 148–159.

  26. S. Luo, Ω-results on Hecke eigenvalues of holomorphic cusp forms, J. Math. Pures Appl., 36 (2020), 414–422.

  27. G. S. Lü, Sums of absolute values of cusp form coefficients and their application, J. Number Theory, 139 (2014), 29–43.

  28. A. Mukhopadhyay and K. Srinivas, A zero density estimate for the Selberg class, Int. J. Number Theory, 3 (2007), 263–273.

  29. J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Études Sci., 134 (2021), 1–116.

  30. R. A. Rankin, Sums of cusp form coefficients, in: Automorphic Forms and Analytic Number Theory, Univ. Montreal, QC (1990), pp. 115–121.

  31. H. Salié, Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Math. Z., 36 (1933), 263–278.

  32. P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313 (1980), 161–170.

  33. H. C. Tang and J. Wu, Fourier coefficients of symmetric power L-functions, J. Number Theory, 167 (2016), 147–160.

  34. A. Walfisz, Über die Koeffizientensummen einiger Moduformen, Math. Ann., 108 (1933), 75–90.

  35. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 204– 207.

  36. J. R. Wilton, A note on Ramanujan’s arithmetical function τ(n), Proc. Cambridge Philos. Soc., 25 (1929), 121–129.

  37. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann., 143 (1961), 75–102.

  38. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar., 18 (1967), 411–467.

  39. P. J. Wong, On the Chebotarev–Sato–Tate phenomenon, J. Number Theory, 196 (2019), 272–290.

  40. X. H. Wu, Estimates on sums of absolute values of Fourier coefficients of cusp forms, Master Thesis, Shandong University (2019).

  41. L. Y. Yang, Average of Dirichlet coefficients of cuspidal representations related to GL(2), Ramanujan J., 56 (2021), 203–234.

  42. D. Y. Zhang and Y. N. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225.

Download references

Acknowledgement

The authors thank the referee for kind comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lao.

Additional information

This work is supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA003).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, H., Zhu, H. On the asymptotics of coefficients of Rankin–Selberg L-functions. Acta Math. Hungar. 170, 524–550 (2023). https://doi.org/10.1007/s10474-023-01357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-023-01357-z

Key words and phrases

Mathematics Subject Classification

Navigation