Skip to main content
Log in

Spectrum of a linear differential equation with constant coefficients

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper we compute the spectrum, in the sense of Berkovich, of an ultrametric linear differential equation with constant coefficients, defined over an affinoid domain of the analytic affine line \({{\mathbb {A}}}^{1,an}_{k}\). We show that it is a finite union of either closed disks or topological closures of open disks and that it satisfies a continuity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In the language of Berkovich, this field can be naturally identified with the complete residue field of the point \(x_{0,r}\in {{\mathbb {A}}}^{1,an}_{k}\) (cf. Sect. 2.2).

  2. Notice that it is relatively easy to show that any non trivial rank one connection over \({{\mathbb {C}}}(\!(S)\!)\) is set theoretically bijective. This follows from the classical index theorem of Malgrange [12]. However, the set theoretical inverse of the connection may not be automatically bounded. This is due to the fact that the base field \({{\mathbb {C}}}\) is trivially valued and the Banach open mapping theorem does not hold in general. However, it is possible to prove that any such set theoretical inverse is bounded (cf. [1]).

  3. This can be motivated by the fact that the resolvent is an analytic function on the complement of the spectrum.

  4. The kernel and the index of a differential equation over an analytic curve are independent of the choice of a derivation.

  5. Note that, since all the structures of finite Banach A-module on M are equivalent, the spectrum does not depend on the choice of such a structure.

  6. Which means that: \(M/{\text {Ker}}\varphi \) endowed with quotient topology is isomorphic to \({\text {Im}}\varphi \).

  7. This topology is usually known as the exponential topology or Vietoris topology.

  8. Note that, in the case where k is not trivially valued, we may assume that the \(\alpha _i\) are of type (1).

References

  1. Azzouz, T. A.: Spectrum of a linear differential equation over a field of formal power series. Preprint (2019) https://hal.archives-ouvertes.fr/hal-01853797

  2. Berkovich, V.G.: Spectral theory and analytic geometry over non-archimedean fields. Math. Surv. Monogr. 33, ix + 169 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Berkovich, V.G.: Étale cohomology for non-archimedean analytic spaces (English). Publ. Math. Inst. Hautes Étud. Sci. 78, 5–161 (1993). https://doi.org/10.1007/BF02712916. (ISSN: 0073-8301; 1618-1913/e)

    Article  MATH  Google Scholar 

  4. Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean analysis : a systematic approach to rigid analytic geometry. Grundlehren der mathematischen Wissenschaften, vol. 261. Springer-Verlag, Berlin (1984)

    Book  Google Scholar 

  5. Bourbaki, N.: Théories spectrales: Chapitres 1 et 2. Bourbaki, Nicolas. Springer, Berlin Heidelberg (2007). (ISBN: 9783540353317)

    MATH  Google Scholar 

  6. Christol, G., Dwork, B.: Modules différentiels sur les couronnes (Differential modules over annuli) (French). Ann. Inst. Fourier 44(3), 663–701 (1994). https://doi.org/10.5802/aif.1414. (ISSN: 0373-0956; 1777-5310/e)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambert-Loir, A.: Mesures et équidistribution sur les espaces de Berkovich French. J. Reine Angew. Math. 595, 215–235 (2006). (ISSN: 0075- 4102; 1435-5345/e)

    MathSciNet  MATH  Google Scholar 

  8. Christol, G.: Modules différentiels et équations différentielles p-adiques. In: Queen’s Papers in Pure and Applied Math (1983)

  9. Dwork, B., Gerotto, G., Sullivan, F.J.: An introduction to G-functions (English), pp. xxi+323. Princeton University Press, Princeton (1994). https://doi.org/10.1515/9781400882540 (ISBN: 0-691-03681-0/pbk)

  10. Fresnel, J., Van der Put, M.: Rigid analytic geometry and its applications. Prog. Math. 218, xii + 296 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Kedlaya, K.S.: p-adic differential equations (English). Cambridge University Press, Cambridge (2010). (ISBN: 978-0-521-76879- 5/hbk)

    Book  Google Scholar 

  12. Malgrange, B.: Sur les points singuliers des équations différentielles. Enseignement Math. 20(2), 147–176 (1974). (ISSN: 0013-8584)

    MathSciNet  MATH  Google Scholar 

  13. Poineau, J.: Les espaces de Berkovich sont angéliques. Bull. Soc. Math. Fr. 141(2), 267–297 (2013)

    Article  MathSciNet  Google Scholar 

  14. Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation III : global decomposition and controlling graphs. ArXiv e-prints (2013). arXiv: 1308.0859 [math.NT]

  15. Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation IV : local and global index theorems. ArXiv e-prints (2013). arXiv: 1309.3940 [math.NT]

  16. Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation. II: Continuity and finiteness on Berkovich curves (English). Acta Math. 214(2), 357–393 (2015). https://doi.org/10.1007/s11511-015-0127-8. (ISSN: 0001-5962; 1871-2509/e)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pulita, A.: The convergence Newton polygon of a p-adic differential equation. I: Affinoid domains of the Berkovich affine line (English). Acta Math. 214(2), 307–355 (2015). https://doi.org/10.1007/s11511-015-0126-9. (ISSN: 0001-5962; 1871-2509/e)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vishik, M.M.: Nonarchimedean spectral theory (English). J. Sov. Math. 30, 2513–2555 (1985). https://doi.org/10.1007/BF02249122. (ISSN: 0090-4104)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author wishes to express her gratitude to her advisors Andrea Pulita and Jérôme Poineau for their precious advice and suggestions, and for careful reading. She thanks Francesco Baldassarri, Frits Beukers, Antoine Ducros and Françoise Truc for useful occasional discussions and suggestions. She also thanks the referee for his suggestions and careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinhinane A. Azzouz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzouz, T.A. Spectrum of a linear differential equation with constant coefficients. Math. Z. 296, 1613–1644 (2020). https://doi.org/10.1007/s00209-020-02482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02482-z

Keywords

Navigation