Skip to main content
Log in

The convergence Newton polygon of a p-adic differential equation II: Continuity and finiteness on Berkovich curves

  • Published:
Acta Mathematica

Abstract

We study the variation of the convergence Newton polygon of a differential equation along a smooth Berkovich curve over a non-archimedean complete valued field of characteristic zero. Relying on work of the second author who investigated its properties on affinoid domains of the affine line, we prove that its slopes give rise to continuous functions that factorise by the retraction through a locally finite subgraph of the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, M. & Rumely, R., Potential Theory and Dynamics on the Berkovich Projective Line. Mathematical Surveys and Monographs, 159. Amer. Math. Soc., Providence, RI, 2010.

  2. Baldassarri F.: Continuity of the radius of convergence of differential equations on p-adic analytic curves. Invent. Math., 182, 513–584 (2010)

    Article  MathSciNet  Google Scholar 

  3. Baldassarri, F. & Di Vizio, L., Continuity of the radius of convergence of p-adic differential equations on Berkovich analytic spaces. Preprint, 2007. arXiv:0709.2008 [math.NT].

  4. Berkovich, V. G., Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, 33. Amer. Math. Soc., Providence, RI, 1990.

  5. Berkovich, V. G., Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math., 78 (1993), 5–161.

  6. Bosch S.: Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume. Math. Ann., 229, 25–45 (1977)

    Article  MathSciNet  Google Scholar 

  7. Bourbaki, N., Éléments de mathématique. Algèbre. Chapitres 4 à 7. Lecture Notes in Mathematics, 864. Masson, Paris, 1981.

  8. Ducros, A., Variation de la dimension relative en géométrie analytique p-adique. Compos. Math., 143 (2007), 1511–1532.

  9. Ducros, A., Triangulations et cohomologie étale sur une courbe analytique p-adique. J. Algebraic Geom., 17 (2008), 503–575.

  10. Ducros, A., Les espaces de Berkovich sont excellents. Ann. Inst. Fourier (Grenoble), 59 (2009), 1443–1552.

  11. Ducros, A., Espaces de Berkovich, polytopes, squelettes et théorie des modèles. Confluentes Math., 4 (2012), 1250007, 57 pp.

  12. Ducros, A., Families of Berkovich spaces. Preprint, 2015. arXiv:1107.4259 [math.AG].

  13. Ducros, A., La structure des courbes analytiques. In preparation. http://www.math.jussieu.fr/~ducros/livre.html.

  14. Dwork B., Robba P.: On ordinary linear p-adic differential equations. Trans. Amer. Math. Soc., 231, 1–46 (1977)

    MathSciNet  Google Scholar 

  15. Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., 24 (1965).

  16. Kedlaya, K. S., p-adic Differential Equations. Cambridge Studies in Advanced Mathematics, 125. Cambridge Univ. Press, Cambridge, 2010.

  17. Kedlaya, K. S., Local and global structure of connections on nonarchimedean curves. To appear in Compos. Math.

  18. Matignon M., Reversat M.: Sur les automorphismes continus d’extensions transcendantes valuées. J. Reine Angew. Math., 338, 195–215 (1983)

    MathSciNet  Google Scholar 

  19. Poineau, J., Espaces de Berkovich sur Z: étude locale. Invent. Math., 194 (2013), 535–590.

  20. Poineau, J., Les espaces de Berkovich sont angéliques. Bull. Soc. Math. France, 141 (2013), 267–297.

  21. Poineau, J. & Pulita, A., The convergence Newton polygon of a p-adic differential equation III: Global decomposition and controlling graphs. Preprint, 2013. arXiv:1308.0859 [math.NT].

  22. Poineau, J., The convergence Newton polygon of a p-adic differential equation IV: Local and global index theorems. Preprint, 2014. arXiv:1308.3940 [math.NT].

  23. Poineau, J., Continuity and finiteness of the radius of convergence of a p-adic differential equation via potential theory. To appear in J. Reine Angew. Math.

  24. Poonen B.: Maximally complete fields. Enseign. Math., 39, 87–106 (1993)

    MathSciNet  Google Scholar 

  25. Pulita, A., The convergence Newton polygon of a p-adic differential equation I: Affinoid domains of the Berkovich affine line. Acta Math., 214 (2015), 307–355.

  26. Temkin M.: Stable modification of relative curves. J. Algebraic Geom., 19, 603–677 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pulita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poineau, J., Pulita, A. The convergence Newton polygon of a p-adic differential equation II: Continuity and finiteness on Berkovich curves. Acta Math 214, 357–393 (2015). https://doi.org/10.1007/s11511-015-0127-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-015-0127-8

2000 Math. Subject Classification

Keywords

Navigation