Skip to main content
Log in

Extremal exponents of random products of conservative diffeomorphisms

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that for a \(C^1\)-open and \(C^{r}\)-dense subset of the set of ergodic iterated function systems of conservative diffeomorphisms of a finite-volume manifold of dimension \(d\ge 2\), the extremal Lyapunov exponents do not vanish. In particular, the set of non-uniform hyperbolic systems contains a \(C^1\)-open and \(C^r\)-dense subset of ergodic random products of independent conservative surface diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, L., Cong, N.D.: On the simplicity of the lyapunov spectrum of products of random matrices. Ergod. Theory Dyn. Syst. 17(5), 1005–1025 (1997)

    Article  MathSciNet  Google Scholar 

  2. Arnold, L., Cong, N.D., Oseledets, V.I.: Jordan normal form for linear cocycles. Report 408. Institut für Dynamische Systeme, Universität Bremen (1997)

  3. Abraham, R., Smale, S.: Nongenericity of O-stability. In: Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, C, 1968), pp. 5–8. American Mathematical Society, Providence, RI (1970)

  4. Avila, A., Santamaria, J., Viana, M.: Holonomy invariance: rough regularity and applications to lyapunov exponents. Astérisque 358, 13–74 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Avila, A.: Density of positive lyapunov exponents for \({G}(2,{R})\)-cocycles. J. Am. Math. Soc. 24(4), 999–1014 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bochi, J., Bonatti, C., Díaz, L.J.: Robust vanishing of all lyapunov exponents for iterated function systems. Math. Z. 276(1–2), 469–503 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bochi, J., Bonatti, C., Díaz, L.J.: Robust criterion for the existence of nonhyperbolic ergodic measures. Commun. Math. Phys. 344(3), 751–795 (2016)

    Article  MathSciNet  Google Scholar 

  8. Crauel, H.: Lyapunov exponents and invariant measures of stochastic systems on manifolds. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov exponents, pp. 271–291. Springer, Berlin, Heidelberg (1986)

    Chapter  Google Scholar 

  9. Crauel, H.: Extremal exponents of random dynamical systems do not vanish. J. Dyn. Differ. Equ. 2(3), 245–291 (1990)

    Article  MathSciNet  Google Scholar 

  10. Cheng, C.-Q., Sun, Y.-S.: Existence of invariant tori in three-dimensional measure-preserving mappings. Celest. Mech. Dyn. Astron. 47(3), 275–292 (1989)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108(3), 377–428 (1963)

    Article  MathSciNet  Google Scholar 

  13. Gorodetski, A.S., Ilyashenko, Y.S., Kleptsyn, V.A., Nalsky, M.B.: Nonremovable zero lyapunov exponent. Funct. Anal. Appl. 39(1), 21–30 (2005)

    Article  MathSciNet  Google Scholar 

  14. Guide, A.H.: Infinite dimensional analysis. Springer, New York (2006)

    Google Scholar 

  15. Herman, M.: Stabilité topologique des systémes dynamiques conservatifs. preprint, (1990)

  16. Kechris, A.: Classical descriptive set theory, vol. 156. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  17. Kleptsyn, V.A., Nalsky, M.B.: Persistence of nonhyperbolic measures for \(C^1\)-diffeomorphisms. Funct. Anal. Appl. 41(4), 271 (2007)

    Article  MathSciNet  Google Scholar 

  18. Knill, O.: Positive lyapunov exponents for a dense set of bounded measurable sl (2, r)-cocycles. Ergod. Theory Dyn. Syst. 12(2), 319–331 (1992)

    Article  MathSciNet  Google Scholar 

  19. Ledrappier, F.: Positivity of the exponent for stationary sequences of matrices. In: Arnold, L., Wihstutz, V. (eds.) Lyapunov exponents, pp. 56–73. Springer, Berlin, Heidelberg (1986)

    Chapter  Google Scholar 

  20. Liu, P.-D., Qian, M.: Smooth ergodic theory of random dynamical systems. Springer, New York (2006)

    MATH  Google Scholar 

  21. Liang, C., Yang, Y.: The \({C}^{1}\) density of nonuniform hyperbolicity in \({C}^{r}\) conservative diffeomorphisms. Proc. Am. Math. Soc. 145(4), 1539–1552 (2017)

    Article  Google Scholar 

  22. Malicet, D.: Random walks on homeo(\(S^1\)). Commun. Math. Phys. 356(3), 1083–1116 (2017)

    Article  MathSciNet  Google Scholar 

  23. Newhouse, S.E.: Nondensity of axiom A(a) on \(S^2\). In: Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, CA, 1968), pp. 191–202. American Mathematical Society, Providence, RI (1970)

  24. Ochs, G., Oseledets, V.I.: On recurrent cocycles and the non-existence of random fixed points. Technical Report 382, Institut für Dynamische Systeme, Universität Bremen, (1996)

  25. Obata, D., Polleti, M.: On the genericity of positive exponents of conservative skew produts with two-dimensional fibers. preprint, (2018)

  26. Pesin, Y.B.: Characteristic lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)

    Article  Google Scholar 

  27. Schmidt, K.: Amenability, kazhdan’s property t, strong ergodicity and invariant means for ergodic group-actions. Ergod. Theory Dyn. Syst. 1(2), 223–236 (1981)

    Article  MathSciNet  Google Scholar 

  28. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73(6), 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  29. Viana, M.: Almost all cocycles over any hyperbolic system have nonvanishing lyapunov exponents. Ann. Math., 643–680, (2008)

  30. Viana, M.: Lectures on Lyapunov exponents, vol. 145. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  31. Xia, Z.: Existence of invariant tori in volume-preserving diffeomorphisms. Ergod. Theory Dyn. Syst. 12(3), 621–631 (1992)

    Article  MathSciNet  Google Scholar 

  32. Zimmer, R.J.: Ergodic theory and semisimple groups. Monographs in Mathematics, vol. 81. Birkhäuser, Basel (1984)

Download references

Acknowledgements

During the preparation of this article the first author was supported by MTM2017-87697-P from Ministerio de Economía y Competividad de España and CNPQ-Brasil. The authors were also funded by RFBM (Réseau Franco-Brésilien en Mathématiques).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo G. Barrientos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Apendix A: Stationary measure

Apendix A: Stationary measure

Let us consider two standard Borel probability spaces \((X,\mu )\) and \((\Omega ,{\mathbb {P}})\) and endow the product space \({\bar{X}}=\Omega \times X\) with the product measure \(\bar{\mu }={\mathbb {P}}\times \mu \). Consider a \(\bar{\mu }\)-preserving measurable skew-product map

$$\begin{aligned} {\bar{f}}: {\bar{X}}\rightarrow {\bar{X}}, \quad {\bar{f}}(\omega ,x)=(\theta \omega ,f_\omega (x)) \end{aligned}$$

where \(\theta \) is a ergodic \({\mathbb {P}}\)-invariant invertible continuous transformation of \(\Omega \) and \(f_\omega :X\rightarrow X\) are continuous \(\mu \)-preserving maps for \({\mathbb {P}}\)-almost all \(\omega \in \Omega \). Let Z be a locally compact Hausdorff topological space and consider the induce Borel \(\sigma \)-algebra. Again, consider a skew-product map

$$\begin{aligned} F:{\bar{X}}\times Z \rightarrow {\bar{X}}\times Z, \quad F({\bar{x}},z)=({\bar{f}}({\bar{x}}), A({\bar{x}})z) \end{aligned}$$
(A.1)

where \(A({\bar{x}}):Z\rightarrow Z\) are continuous maps \(\mu \)-almost surely. Sometimes we write \(F={\bar{f}}\ltimes A({{\bar{x}}})\) or \(F=({\bar{f}},A)\) when no confusion can arise to emphasize the base map and the fiber maps of F. Observe that since \({\bar{f}}=\theta \ltimes f_\omega \) is also a skew-product map, we can also rewrite \(F= \theta \ltimes F_\omega \) where \(F_\omega = f_\omega \ltimes A(\omega ,x)\). That is, \(F= \theta \ltimes f_\omega \ltimes A(\omega ,x)\).

Definition A.1

A measure \({\hat{\nu }}\) on \(X\times Z\) is \(({\bar{f}},A)\)-stationary if \({\hat{\nu }}\) projets down on X over \(\mu \) and

$$\begin{aligned} {\hat{\nu }} = \int F_\omega {\hat{\nu }} \, d{\mathbb {P}}(\omega ). \end{aligned}$$

Notice that by definition a stationary measure is not necessarily a probability measure. Denote by \({\mathscr {M}}(Z)\) be the Banach space of signed finite (not necessarily probability) Borel measures on Z with variation norm. This Banach space can be identified with the dual of \(C_0(Z)\), the space of bounded continuous real-valued functions on Z vanishing at infinity with supremum norm. Then we can endow \({\mathscr {M}}(Z)\) with the weak\(^*\) topology and consider the Borel \(\sigma \)-algebra induced by this topology. Let \(L^\infty (X;{\mathscr {M}}(Z))\) be the Banach space of (equivalence classes of) essentially bounded measurable mappings from X to \({\mathscr {M}}(Z)\). Given \(\nu : x \mapsto \nu _x\) in \(L^\infty (X;{\mathscr {M}}(Z))\) define the measure \({\hat{\nu }}\) on \(X\times Z\) by

$$\begin{aligned} {\hat{\nu }}(E\times B) = \int _E \nu _x(B) \, d\mu (x) \end{aligned}$$

for E, B measurable sets on X and Z respectively and extending to the product \(\sigma \)-algebra. By definition \({\hat{\nu }}\) has as marginal \(\mu \) and disintegration \(\nu : x \mapsto \nu _x\). That is, \(d{\hat{\nu }}= \nu _x\,d\mu (x)\).

Notice that \(L^\infty (X;{\mathscr {M}}(Z))\) can be identified with the dual of the Banach space

$$\begin{aligned} L^1(X;C_0(Z)){\mathop {=}\limits ^{\scriptscriptstyle \mathrm{def}}}\{h:X \rightarrow C_0(Z): \ \Vert h_x\Vert _\infty \in L^1(X,\mu ) \}. \end{aligned}$$

We introduce the transfer operator \({\mathscr {P}}\) on \(L^1(X;C_0(Z))\) defined by

$$\begin{aligned} {\mathscr {P}}\varphi {\mathop {=}\limits ^{\scriptscriptstyle \mathrm{def}}}\int \varphi \circ F_\omega \, d{\mathbb {P}}(\omega ) \in L^1(X;C_0(Z)) \ \ \text {for }\varphi \in L^1(X;C_0(Z)). \end{aligned}$$

It is clear that \({\mathscr {P}}\) is a bounded linear operator. The adjoint transition operator \( {\mathscr {P}}^*\) acts on \(L^\infty (X;{\mathscr {M}}(Z))\) by taking \(\nu : x \mapsto \nu _x\) in \(L^\infty (X;{\mathscr {M}}(Z))\) and defining \({\mathscr {P}}^*\nu \in L^\infty (X;{\mathscr {M}}(Z))\) as

$$\begin{aligned} {\mathscr {P}}^*\nu : x \mapsto ({\mathscr {P}}^*\nu )_x=\int A(\theta ^{-1}\omega ,f_\omega ^{-1}(x)) \nu _{f_\omega ^{-1}(x)} \,d{\mathbb {P}}(\omega ). \end{aligned}$$

Consequently \({\mathscr {P}}^*\) is also a bounded linear operator. Moreover, if \({\mathscr {P}}^*\nu =\nu \), then \({\hat{\nu }}\) is a \(({\bar{f}},A)\)-stationary measure on \(X\times Z\). Indeed,

$$\begin{aligned} \int F_\omega {\hat{\nu }}(E\times B) \, d{\mathbb {P}}(\omega )&= \int \int _E A(\theta ^{-1}\omega ,f_\omega ^{-1}(x)) \nu _{f_\omega ^{-1}(x)}(B) \, d\mu (x)d{\mathbb {P}}(\omega ) \\&=\int _E ({\mathscr {P}}^*\nu )_x(B) \, d\mu (x)=\int _E \nu _x(B)\,d\mu (x) = {\hat{\nu }}(E\times B) \end{aligned}$$

for all E, B measurable sets on X and Z respectively. Hence \({\hat{\nu }}\) is a \(({\bar{f}},A)\)-stationary measure.

According to Banach-Alaoglu’s theorem the unit ball in \(L^\infty (X;{\mathscr {M}}(Z))\) is a compact set. Moreover, since X is a standard probability space, its \(\sigma \)-algebra is countably generated. This implies that \(L^1(X;C_0(Z))\) is separable and thus \(L^\infty (X;{\mathscr {M}}(Z))\) is metrizable [8]. Consequently the unit ball in \(L^\infty (X;{\mathscr {M}}(Z))\) is also sequentially compact. Now, the existence of stationary probability measures for random cocycles follows from standard arguments when Z is compact.

Proposition A.2

Let \(({\bar{f}},A)\) be skew-product as (A.1) acting on \({\bar{X}}\times Z\). If Z is a compact Hausdorff topological space, then the set of \(({\bar{f}},A)\)-stationary probability measures on \(X\times Z\) is nonvoid.

Proof

Denote by \({\mathscr {P}}(Z)\) the subset of \({\mathscr {M}}(Z)\) of probability measure. Notice that

$$\begin{aligned} L^\infty (X;{\mathscr {P}}(Z))=\{\nu \in L^\infty (X;{\mathscr {P}}(Z)): \nu _x \in {\mathscr {P}}(Z) \ \ \nu \text {-almost surely} \} \end{aligned}$$

is a convex subset of the unit ball in \(L^\infty (X;{\mathscr {M}}(Z))\). Moreover, \({\mathscr {P}}^*\) leaves \(L^\infty (X;{\mathscr {P}}(Z))\) invariant. Since, by assumption Z is compact, \(L^\infty (X;{\mathscr {P}}(Z))\) is closed and hence compact in the weak\(^*\) topology. Brouwer’s fixed-point theorem yields the existence of a \({\mathscr {P}}^*\)-invariant element \(\nu \in L^\infty (X;{\mathscr {P}}(Z))\). This yields a \(({\bar{f}},A)\)-stationary measure \({\hat{\nu }}\) on \(X\times Z\) defined by \(d{\hat{\nu }}=\nu _x\,d\mu (x)\) and completes the proof. \(\square \)

When Z is not compact we can not guarantee in general that the set of \(({\bar{f}},A)\)-stationary probability measure is nonvoid. However the following lemma provides a powerful method to find stationary finite measure.

Lemma A.3

Let \(\nu \in L^\infty (X;{\mathscr {P}}(Z))\). Then, the set of accumulation point \(\eta \in L^\infty (X;{\mathscr {M}}(Z))\) of the sequence \((\nu _n)_n\) given by

$$\begin{aligned} \nu _n=\frac{1}{n}\sum _{j=0}^{n-1} {\mathscr {P}}^{*j}\nu \in L^\infty (X;{\mathscr {P}}(Z)) \quad \text {for }n\in {\mathbb {N}} \end{aligned}$$

is nonvoid. Moreover, any accumulation point \(\eta \) of \((\nu _n)_n\) defines a \(({\bar{f}},A)\)-stationary finite measure \({\hat{\eta }}\) on \(X\times Z\) whose disintegration is \(\eta \). Consequently \({\hat{\eta }}\) is an accumulation point in the weak\(^*\) topology of the sequence of probability measures \(({\hat{\nu _n}})_n\) on \(X\times Z\) defined by the disintegrations \((\nu _n)_n\).

Proof

Since the unit ball of \(L^\infty (X;{\mathscr {M}}(Z))\) is sequentially compact then we can extract a convergent subsequence from \((\nu _n)_n\) and thus the set of accumulation points is not empty. Moreover, any accumulation point belongs to this ball. Thus \((\nu _n)_x\) is a finite measure \(\mu \)-almost surly. On the other hand, by well known arguments the limit \(\eta \) of any convergent sequences of \((\nu _n)_n\) is also \({\mathscr {P}}^*\)-invariant and thus \({\hat{\eta }}\) is a \(({\bar{f}},A)\)-stationary measure on \(X\times Z\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrientos, P.G., Malicet, D. Extremal exponents of random products of conservative diffeomorphisms. Math. Z. 296, 1185–1207 (2020). https://doi.org/10.1007/s00209-020-02464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02464-1

Navigation