Skip to main content
Log in

Extremal exponents of random dynamical systems do not vanish

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

A family of random diffeomorphisms on a manifoldM is said to be a random dynamical system or RDS if it has the so-called cocycle property. The multiplicative ergodic theorem assignsd (=dimM) Lyapunov exponents to every invariant measure of the system. Take the maximum of the leading exponents associated with the various invariant measures. The resulting number is said to be the maximal exponent of the system. The minimal exponent is defined in a similar fashion. It is shown that the minimal exponent of an RDSϕ on a compact manifold is negative, provided not all invariant measures are determined by the future ofϕ. A similar statement relates the maximal exponent with the past ofϕ. We proceed by introducing Markov systems and Markov measures. This notion covers flows of stochastic differential equations as well as products of random diffeomorphisms in Markovian dependence, in particular, products of iid diffeomorphisms. Markov measures are characterized by the fact that they are functionals of the past. Consequently, if there exists a non-Markovian invariant measure, then the maximal exponent does not vanish. Typically, Markov systems do have non-Markovian invariant measures. Finally, for linear systems we recover results of Ledrappier. In particular, these results provide another proof of Furstenberg's theorem on the positivity of the leading exponent of a product of iid unimodular matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L., and Kliemann, W. (1983). Qualitative theory of stochastic systems. In Bharucha-Reid, A. T. (ed.),Probabilistic Analysis and Related Topics, Vol. 3, Academic Press, New York.

    Google Scholar 

  • Arnold, L., and Wihstutz, V. (eds.) (1986).Lyapunov Exponents, Proceedings, Bremen 1984, Lecture Notes in Mathematics 1186, Springer, Berlin.

    Google Scholar 

  • Arnold, V. I., and Avez, A. (1967).Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris.

    Google Scholar 

  • Baxendale, P. H. (1989). Lyapunov exponents and relative entropy for a stochastic flow of diffeomorphisms.Prob. Theor. Rel. Fields 81, 522–554.

    Google Scholar 

  • Bougerol, P. (1988). Comparaison des exposants de Lyapunov des processus markoviens multiplicatifs.Ann. Inst. Henri Poincaré 24, 439–89.

    Google Scholar 

  • Bowen, R. (1971). Entropy for group endomorphisms and homogeneous spaces.Trans. Am. Soc. 153, 401–414; Erratum.Trans. Am. Soc. 181, 509–510.

    Google Scholar 

  • Carverhill, A. (1985). Flows of stochastic dynamical systems: Ergodic theory.Stochastics 14, 273–317.

    Google Scholar 

  • Crauel H. (1986). Lyapunov exponents and invariant measures of stochastic systems on manifolds. In Arnold, L., and Wihstutz, V. (eds.),Lecture Notes in Mathematics 1186, Springer, Berlin, pp. 271–291.

    Google Scholar 

  • Crauel, H. (1987).Random Dynamical Systems: Positivity of Lyapunov Exponents, and Markov Systems, Dissertation, UniversitÄt Bremen, Bremen. (Also Report No. 175, Institut für Dynamische Systeme, UniversitÄt Bremen, Bremen, 1988).

    Google Scholar 

  • Crauel, H. (1989). Markov measures for random dynamical systems. Preprint, Bremen.

  • Dahlke, S. (1989).Invariante Mannigfaltigkeiten für Produkte zufÄlliger Diffeomorphismen, Dissertation, UniversitÄt Bremen, Bremen.

    Google Scholar 

  • Dunford, N., and Schwartz, J. T. (1958).Linear Operators, Part I, Interscience, New York.

    Google Scholar 

  • Furstenberg, H. (1963). Noncommuting random products.Trans. Am. Soc. 108, 377–428.

    Google Scholar 

  • Guivarc'h, Y. (1984). Exposants caractéristiques des produits de matrices aléatoires en dépendence markovienne. In Heyer, H. (ed.),Probability Measures on Groups VII, Proceedings Oberwolfach 1983, Lecture Notes in Mathematics 1064, Springer, Berlin.

    Google Scholar 

  • Hirsch, M. W. (1976).Differential Topology, Springer, New York.

    Google Scholar 

  • Kullback, S. (1968).Information Theory and Statistics, Dover, New York (first published by Wiley, New York, 1959).

    Google Scholar 

  • Kunita, H. (1982). On backward stochastic differential equations.Stochastics 6, 293–313.

    Google Scholar 

  • Kunita, H. (1984). Stochastic differential equations and stochastic flow of diffeomorphisms. In Henequin, P. L. (ed.),école d'été de Probabilités de Saint Flour XII—1982, Lecture Notes in Mathematics 1097, Springer, Berlin.

    Google Scholar 

  • Ledrappier, F. (1986). Positivity of the exponent for stationary sequences of matrices. In Arnold, L., and Wihstutz, V. (eds.),Lecture Notes in Mathematics dy1186, Springer, Berlin, pp. 56–73.

    Google Scholar 

  • Ledrappier, F., and Young, L.-S. (1985). The metric entropy of diffeomorphisms I.Ann. Math. 122, 509–539.

    Google Scholar 

  • Ledrappier, F., and Young, L.-S. (1988). Entropy formula for random transformatons.Prob. Theor. Rel. Fields 80, 217–240.

    Google Scholar 

  • Le Jan, Y. (1987). équilibre statistique pour les produits de difféomorphismes aléatoires indépendants.Ann. Inst. Henri Poincaré 23, 111–120.

    Google Scholar 

  • Oseledec, V. I. (1968). A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems.Trans. Moscow Math. Soc. 19, 197–231.

    Google Scholar 

  • Royer, G. (1981). Croissance exponentielle de produits markoviens de matrices aléatoires.Ann. Inst. Henri Poincaré Sect. B (N.S.) 16(1), 49–62.

    Google Scholar 

  • Rozanov, Yu. A. (1967).Stationary Random Processes, Holden-Day, San Francisco.

    Google Scholar 

  • Ruelle, D. (1979). Ergodic theory of differentiable dynamical systems.Publ. Math. IHES 50, 27–58.

    Google Scholar 

  • Rudin, W. (1974).Real and Complex Analysis, McGraw-Hill, New York.

    Google Scholar 

  • Virtser, A. D. (1979). On products of random matrices and operators.Theory Prob. Appl. 26(2), 367–377.

    Google Scholar 

  • Walters, P. (1982).An Introduction to Ergodic Theory, Springer, New York.

    Google Scholar 

  • Williams, D. (1979).Diffusions, Markov Processes, and Martingales, Wiley, Chichester.

    Google Scholar 

  • Young, L.-S. (1986). Stochastic stability of hyperbolic attractors.Ergod. Theor. Dynam. Syst. 6, 311–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crauel, H. Extremal exponents of random dynamical systems do not vanish. J Dyn Diff Equat 2, 245–291 (1990). https://doi.org/10.1007/BF01048947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048947

Key words

Navigation