Skip to main content
Log in

A new equivariant cohomology ring

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, motivated by Chen–Ruan’s stringy orbifold theory on almost complex orbifolds, we construct a new equivariant cohomology ring \({\mathscr {H}}^*_G(X)\) for an equivariant almost complex pair (XG), where X is a compact connected almost complex manifold, G is a connected compact Lie group which acts on X and preserves the almost complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Gómez, J.: On the structure of spaces of commuting elements in compact Lie groups. In: Bjorner, A., Cohen, F.R., De Concini, C., Procesi, C., Salvetti, M. (eds.) Configuration Spaces, pp. 1–26. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  2. Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  3. Becerra, E., Uribe, B.: Stringy product on twisted orbifold K-theory for abelian quotients. Trans. Am. Math. Soc. 361, 5781–5803 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cieliebak, K., Gaio, A., Salamon, D.: J-Holomorphic curves, moment maps, and invariants of Hamiltonian group actions. IMRN 2000(10), 831–882 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Cieliebak, K., Gaio, A., Mundet i Riera, I., Salamon, D.: The symplectic vortex equations and invariants of Hamiltonian group actions. J. Symplectic Geom. 1, 543–645 (2002)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., Hu, S.: A deRham model of Chen–Ruan cohomology ring of abelian orbifolds. Math. Ann. 336, 51–71 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory. Cont. Math. 310, 25–85 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chen, W., Ruan, Y.: A new cohomology theory for orbifold. Commun. Math. Phys. 248, 1–31 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chen, B., Wang, B.-L., Wang, R.: \(L^2\)-moduli spaces of symplectic vortices on Riemann surfaces with cylindrical ends. arXiv: 1405.6387 (2014)

  10. Chen, B., Wang, B.-L., Wang, R.: \(L^2\)-symplectic votices and Hamiltonian Gromov–Witten invariants. In preparation

  11. Chen, B., Wang, B.-L., Wang, R.: Augmented symplectic vortices, Hamiltonian equivariant Gromov–Witten invariants and quantization of Kirwan morphisms. In preparation

  12. Du, C.-Y., Li, T.: Chen–Ruan cohomology and stringy orbifold K-theory for stable almost complex orbifolds. To appear in Chin. Ann. Math. Ser. B, (2017)

  13. Edidin, D., Jarvis, T.J., Kimura, T.: Logarithmic trace and orbifold products. Duke Math. J. 153, 427–473 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fantechi, B., Gottsche, L.: Orbifold cohomology for global quotients. Duke Math. J. 117, 197–227 (2003)

    Article  MathSciNet  Google Scholar 

  15. Guillemin, V., Ginzburg, V., Karshon, Y.: Moment maps, cobordisms, and Hamiltonian group actions. AMS, Providence (2002)

    Book  Google Scholar 

  16. Gaio, A., Salamon, D.: Gromov–Witten invariants of symplectic quotients and adiabatic limits. J. Symplectic Geom. 3, 55–159 (2005)

    Article  MathSciNet  Google Scholar 

  17. Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer Science & Business Media, Berlin (1999)

    Book  Google Scholar 

  18. Goldin, R., Holm, T.S., Knutson, A.: Orbifold cohomology of torus quotients. Duke Math. J. 139, 89–139 (2007)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Wang, B.-L.: Delocalized Chern character for stringy orbifold K-theory. Trans. Am. Math. Soc. 365, 6309–6341 (2013)

    Article  MathSciNet  Google Scholar 

  20. Hsiang, W.-Y.: Lectures on Lie Groups. World Scientific Publishing Co. Pte. Ltd., Singapore (1998)

    Google Scholar 

  21. Jarvis, T.J., Kaufmann, R., Kimura, T.: Stringy K-theory and the Chern character. Invent. Math. 168, 23–81 (2007)

    Article  MathSciNet  Google Scholar 

  22. Li, T.-Y., Chen, B.: Hamiltonian Gromov–Witten Invariants on \({\mathbb{C}}^{n+1}\) with \(S^1\)-action. Acta Math. Sin. (Engl. Ser.) 32, 309–330 (2016)

    Article  MathSciNet  Google Scholar 

  23. Li, W.-P., Qin, Z.: The cohomological crepant resolution conjecture for the Hilbert–Chow morphisms. J. Differ. Geom. 104, 499–557 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mundet i Riera, I.: A Hitchin–Kobayashi correspondence for Kähler fibrations. J. Reine Angew. Math. 528, 41–80 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Mundet i Riera, I.: Hamiltonian Gromov–Witten invariants. Topology 42, 525–553 (2003)

    Article  MathSciNet  Google Scholar 

  26. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology, vol. 52. Colloquium Publications, Providence (2004)

    MATH  Google Scholar 

  27. Quillen, D.: Elementary proof of some results of cobordism theory using Steenord operators. Adv. Math. 7, 29–56 (1971)

    Article  Google Scholar 

  28. Ruan, Y.: Stringy geometry and topology of orbifolds. In “Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000)”, pp. 187–233, Contemp. Math., vol. 312, Providence, RI: American Mathematical Society (2002)

  29. Ruan, Y.: Stringy orbifolds. In “Orbifolds in Mathematics and Physics (Madison, WI, 2001)”, pp. 259–299, Contemp. Math., vol. 310, Providence, RI: American Mathematical Society (2002)

  30. Ruan, Y.: The cohomology ring of crepant resolutions of orbifolds, in “Gromov–Witten theory of spin curves and orbifolds”, pp. 117–126, Contemp. Math., vol. 403, Providence, RI: American Mathematical Society (2006)

  31. Uribe, B.: Orbifold cohomology of the symmetric product. Commun. Anal. Geom. 13, 113–128 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Bai-Ling Wang, Rui Wang and Yu Wang for useful discussions. The authors also thank the anonymous referee for his/her careful reading and helpful suggestions. This work is supported by National Natural Science Foundation of China (No. 11431001, No. 11726607, No. 11890663, No. 11501393, No. 11626050), by Sichuan Science and Technology Program (No. 2019YJ0509), by Sichuan University (No. 1082204112190), by Science and Technology Research Program of Chongqing Education Commission of China (No. KJ1600324) and by Natural Science Foundation of Chongqing, China (No. cstc2018jcyjAX0465).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Yong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Existence of equivariant volume form

Appendix A: Existence of equivariant volume form

In this appendix we show the existence of the equivariant volume form that we used in the definition of equivariant product \(\star _m\). Let G be a connected compact Lie group and T be its maximal torus. Let \(\mathfrak g\) and \(\mathfrak t\) be their Lie algebras. G acts on G by conjugation and on \(\mathfrak g\) by the adjoint representation.

Proposition 5

For every \(h\in T\), there exists an \(\alpha \in \mathfrak t\) such that \(C(h)=C(\alpha )\).

Corollary 3

For every \(h\in T\), G / C(h) is a Kähler manifold. Moreover, it has a G-equivariant volume form \({\varOmega }^G_h\) with equivariant integration 1.

Proof

By Proposition 5, \(G/C(h)=G/C(\alpha )\) for some \(\alpha \in \mathfrak t\). Since \(G/C(\alpha )\) is a (co)-adjoint orbit, it is Kähler and the G-action on it is Hamiltonian. Denote its Kähler form by \(\omega _\alpha \) and by \(\omega _\alpha + \mu _\alpha \) the equivariant extension of \(\omega _\alpha \), where \(\mu _\alpha \) is the moment map for the Hamiltonian G-action on \(G/C(\alpha )\). Then \((\omega _\alpha +\mu _\alpha )^d\) is an equivariant volume form, where d is the complex dimension of \(G/C(\alpha )\). Suppose the equivariant integration of \((\omega _\alpha +\mu _\alpha )^d\) is \(\theta \in {\mathbb {R}}\). Then \((\omega _\alpha +\mu _\alpha )^d/\theta \) has equivariant integration 1. \(\square \)

Proof of Proposition 5

Since T is abelian, its adjoint action on \(\mathfrak g\) induces a splitting

$$\begin{aligned} \mathfrak g = \mathfrak t \oplus {\mathbb {C}}_1\oplus \cdots \oplus {\mathbb {C}}_k \end{aligned}$$

and the action is given by \(1\oplus \phi _1\oplus \cdots \oplus \phi _k\). Let \(T_i=\{t\in T\mid \phi _i(t)=1\}\), and for any \(I\subseteq \{1,\ldots ,k\}\), set

$$\begin{aligned} T_I=\bigcap _{i\in I}T_i \end{aligned}$$

and \(T_\varnothing =T\). Then T is stratified by

$$\begin{aligned} T'_I=T_I{\setminus } \bigcup \limits _{J\supseteq I} T_J. \end{aligned}$$

Similarly, let \(\mathfrak t_I\) be the Lie algebra of \(T_I\) and \(\mathfrak t'_I\) forms a stratification of \(\mathfrak t\).

Suppose that \(h\in T'_I\), then choose an \(\alpha \in \mathfrak t'_I\). It is sufficient to show that \(\mathfrak c(h)=\mathfrak c(\alpha )\) which implies that \(C(h)=C(\alpha )\), since both C(h) and \(C(\alpha )\) are connected subgroup of G (cf. [20, Corollary 2, §3.1]). In fact,

$$\begin{aligned} \mathfrak c(h)=\{\xi \mid h\xi h^{-1}=\xi \}, \end{aligned}$$

since \(h\in T'_I\), it fixes \(\mathfrak t\) and all \({\mathbb {C}}_i\) for \(i\in I\). Hence \(\mathfrak c(h)=\mathfrak t\oplus \bigoplus _{i\in I}{\mathbb {C}}_i\). Similarly, \(\mathfrak c(\alpha )\) is the same space.

Theorem 4

Suppose that \(h_1, h_2\in T\) and \({\mathbf {h}}=(h_1,h_2)\). The fibration \(p_1:G/C(h_1, h_2)\rightarrow G/C(h_1)\) admits a fiber-wise G-equivariant volume form \(\text {vol}({\mathbf {h}},h_1)\), such that \(p_{1,*}(\text {vol}({\mathbf {h}},h_1))=1\).

Proof

The fiber of \(p_1:G/C(h_1,h_2)\rightarrow G/C(h_1)\) is \(C(h_1)/C(h_1,h_2)\). Set \(K=C(h_1)\). Since \(h_1\) and \(h_2\) commutes, \(h_2\in K\). Hence \(C(h_1,h_2)=C_K(h_2)\) and \(C(h_1)/C(h_1,h_2)=K/C_K(h_2)\). By Corollary 3, there exists a K-equivariant volume form \({\varOmega }^K_{h_2}\) on \(K/C_K(h_2)\). Note that

$$\begin{aligned} G/C(h_1,h_2)=K/C_K(h_2)\times _K G. \end{aligned}$$

For each point \([h]\in G/C(h_1)\), write the fiber over [h] by \(F_{[h]}\). Then by setting \(\text {vol}({\mathbf {h}},h_1)|_{F_{[h]}}=h^*{\varOmega }^K_{h_2}\) for each point \([h]\in G/C(h_1)\) we get this volume form \(\text {vol}({\mathbf {h}},h_1)\). We can also get this volume form \(\text {vol}({\mathbf {h}},h_1)\) via the canonical isomorphism

$$\begin{aligned} H^*_G(G/C(h_1,h_2))=H^*_G(K/C_K(h_2)\times _K G)\cong H^*_K(K/C_K(h_2)). \end{aligned}$$

Since the equivariant integration of \({\varOmega }^K_{h_2}\) over \(K/C_K(h_2)\) is 1, \(p_{1,*}(\text {vol}({\mathbf {h}},h_1))=1\). The proof is complete. \(\square \)

By induction on the length of \({\mathbf {h}}=(h_1,\ldots ,h_m)\in G_m^{\textsf {f} }\), this theorem could be generalized to \(G/C({\mathbf {h}})\rightarrow G/C({\mathbf {h}}_{i_1,\ldots , i_k})\) and \(G/C({\mathbf {h}})\rightarrow G/C({\mathbf {h}}_{\infty })\). Therefore all kinds of fibrations used in the definition of the equivariant product \(\star _m\) have fiber-wise G-equivariant volume forms with equivariant push-forwards being 1. For example for \(p_1:G/C({\mathbf {h}})\rightarrow G/C(h_1)\) with \({\mathbf {h}}=(h_1,h_2,h_3)\), we could decompose \(p_1\) into

$$\begin{aligned} G/C({\mathbf {h}})\xrightarrow {p_{1,2}} G/C(h_1,h_2)\xrightarrow {p_1} G/C(h_1). \end{aligned}$$

By similar proof as Theorem 4 we get the volume form \(\text {vol}({\mathbf {h}},(h_1,h_2))\) for \(p_{1,2}:G/C({\mathbf {h}})\rightarrow G/C(h_1,h_2)\). The fiber-wise G-equivariant volume form for \(p_1:G/C({\mathbf {h}})\rightarrow G/C(h_1)\) is

$$\begin{aligned} \text {vol}({\mathbf {h}},h_1)=\text {vol}({\mathbf {h}},(h_1,h_2))\wedge p_{1,2}^*\text {vol}((h_1,h_2),h_1). \end{aligned}$$

Moreover,

$$\begin{aligned} p_{1,*}(\text {vol}({\mathbf {h}},h_1))=p_{1,*}\circ p_{1,2,*}(\text {vol}({\mathbf {h}},(h_1,h_2))\wedge p_{1,2}^*\text {vol}((h_1,h_2),h_1))=1. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Du, CY. & Li, T. A new equivariant cohomology ring. Math. Z. 295, 1163–1182 (2020). https://doi.org/10.1007/s00209-019-02398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02398-3

Keywords

Mathematics Subject Classification

Navigation